BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36568503)

  • 1. Recent progress in drying technologies for improving the stability and delivery efficiency of biopharmaceuticals.
    Emami F; Keihan Shokooh M; Mostafavi Yazdi SJ
    J Pharm Investig; 2023; 53(1):35-57. PubMed ID: 36568503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals.
    Emami F; Vatanara A; Park EJ; Na DH
    Pharmaceutics; 2018 Aug; 10(3):. PubMed ID: 30126135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery.
    Farinha S; Sá JV; Lino PR; Galésio M; Pires J; Rodrigues MÂ; Henriques J
    Pharm Res; 2023 May; 40(5):1115-1140. PubMed ID: 36456666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid Dosage Forms of Biopharmaceuticals in Drug Delivery Systems Using Sustainable Strategies.
    Costa C; Casimiro T; Corvo ML; Aguiar-Ricardo A
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders.
    Brunaugh AD; Wu T; Kanapuram SR; Smyth HDC
    Mol Pharm; 2019 Oct; 16(10):4165-4180. PubMed ID: 31448924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biopharmaceutical powders: particle formation and formulation considerations.
    Maa YF; Prestrelski SJ
    Curr Pharm Biotechnol; 2000 Nov; 1(3):283-302. PubMed ID: 11469385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative Drying Technologies for Biopharmaceuticals.
    Sharma A; Khamar D; Cullen S; Hayden A; Hughes H
    Int J Pharm; 2021 Nov; 609():121115. PubMed ID: 34547393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulating monoclonal antibodies as powders for reconstitution at high concentration using spray-drying: Trehalose/amino acid combinations as reconstitution time reducing and stability improving formulations.
    Massant J; Fleurime S; Batens M; Vanhaerents H; Van den Mooter G
    Eur J Pharm Biopharm; 2020 Nov; 156():131-142. PubMed ID: 32882422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of excipient enhanced growth (EEG) tobramycin dry powder aerosol formulations.
    Hassan A; Farkas D; Longest W; Hindle M
    Int J Pharm; 2020 Dec; 591():120027. PubMed ID: 33130220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Room-Temperature Aerosol Dehydration Versus Spray Drying: A Novel Paradigm in Biopharmaceutical Drying Technologies.
    Poozesh S; Mezhericher M; Pan Z; Chaudhary U; Manikwar P; Stone HA
    J Pharm Sci; 2024 Apr; 113(4):974-981. PubMed ID: 37802368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals.
    Vass P; Démuth B; Hirsch E; Nagy B; Andersen SK; Vigh T; Verreck G; Csontos I; Nagy ZK; Marosi G
    J Control Release; 2019 Feb; 296():162-178. PubMed ID: 30677436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein inhalation powders: spray drying vs spray freeze drying.
    Maa YF; Nguyen PA; Sweeney T; Shire SJ; Hsu CC
    Pharm Res; 1999 Feb; 16(2):249-54. PubMed ID: 10100310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How spray drying processing and solution composition can affect the mAbs stability in reconstituted solutions for subcutaneous injections. Part II: Exploring each protein stabilizer effect.
    Barcelo-Chong CM; Filipe V; Nakach M; Inês Ré M
    Int J Pharm; 2024 Apr; 655():124014. PubMed ID: 38513817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excipients in freeze-dried biopharmaceuticals: Contributions toward formulation stability and lyophilisation cycle optimisation.
    Bjelošević M; Zvonar Pobirk A; Planinšek O; Ahlin Grabnar P
    Int J Pharm; 2020 Feb; 576():119029. PubMed ID: 31953087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of drying method and excipient on the structure and physical stability of protein solids: Freeze drying vs. spray freeze drying.
    Mutukuri TT; Wilson NE; Taylor LS; Topp EM; Zhou QT
    Int J Pharm; 2021 Feb; 594():120169. PubMed ID: 33333176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.
    Grohganz H; Lee YY; Rantanen J; Yang M
    Int J Pharm; 2013 Apr; 447(1-2):224-30. PubMed ID: 23500620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray-Dried and Spray-Freeze-Dried Powder Formulations of an Anti-Interleukin-4Rα Antibody for Pulmonary Delivery.
    Pan HW; Seow HC; Lo JCK; Guo J; Zhu L; Leung SWS; Zhang C; Lam JKW
    Pharm Res; 2022 Sep; 39(9):2291-2304. PubMed ID: 35879500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical Techniques for Structural Characterization of Proteins in Solid Pharmaceutical Forms: An Overview.
    Bolje A; Gobec S
    Pharmaceutics; 2021 Apr; 13(4):. PubMed ID: 33920461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles.
    Keil TWM; Feldmann DP; Costabile G; Zhong Q; da Rocha S; Merkel OM
    Eur J Pharm Biopharm; 2019 Oct; 143():61-69. PubMed ID: 31445157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manufacturing of High-Concentration Monoclonal Antibody Formulations via Spray Drying-the Road to Manufacturing Scale.
    Gikanga B; Turok R; Hui A; Bowen M; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2015; 69(1):59-73. PubMed ID: 25691715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.