These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36568580)
1. Interpretable machine learning for predicting pathologic complete response in patients treated with chemoradiation therapy for rectal adenocarcinoma. Wang D; Lee SH; Geng H; Zhong H; Plastaras J; Wojcieszynski A; Caruana R; Xiao Y Front Artif Intell; 2022; 5():1059033. PubMed ID: 36568580 [TBL] [Abstract][Full Text] [Related]
2. Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy. Lee SH; Han P; Hales RK; Voong KR; Noro K; Sugiyama S; Haller JW; McNutt TR; Lee J Phys Med Biol; 2020 Sep; 65(19):195015. PubMed ID: 32235058 [TBL] [Abstract][Full Text] [Related]
3. Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning. Wang Y; Pan Z; Li S; Cai H; Huang Y; Zhuang J; Liu X; Lu X; Guan G Eur J Surg Oncol; 2024 Dec; 50(12):108738. PubMed ID: 39395242 [TBL] [Abstract][Full Text] [Related]
4. Interpretable Machine Learning for Choosing Radiation Dose-volume Constraints on Cardio-pulmonary Substructures Associated with Overall Survival in NRG Oncology RTOG 0617. Lee SH; Geng H; Arnold J; Caruana R; Fan Y; Rosen MA; Apte AP; Deasy JO; Bradley JD; Xiao Y Int J Radiat Oncol Biol Phys; 2023 Dec; 117(5):1270-1286. PubMed ID: 37343707 [TBL] [Abstract][Full Text] [Related]
5. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
6. Dosiomics and radiomics-based prediction of pneumonitis after radiotherapy and immune checkpoint inhibition: The relevance of fractionation. Kraus KM; Oreshko M; Schnabel JA; Bernhardt D; Combs SE; Peeken JC Lung Cancer; 2024 Mar; 189():107507. PubMed ID: 38394745 [TBL] [Abstract][Full Text] [Related]
7. Development of prediction models for one-year brain tumour survival using machine learning: a comparison of accuracy and interpretability. Charlton CE; Poon MTC; Brennan PM; Fleuriot JD Comput Methods Programs Biomed; 2023 May; 233():107482. PubMed ID: 36947980 [TBL] [Abstract][Full Text] [Related]
8. Application of machine learning techniques for predicting survival in ovarian cancer. Sorayaie Azar A; Babaei Rikan S; Naemi A; Bagherzadeh Mohasefi J; Pirnejad H; Bagherzadeh Mohasefi M; Wiil UK BMC Med Inform Decis Mak; 2022 Dec; 22(1):345. PubMed ID: 36585641 [TBL] [Abstract][Full Text] [Related]
9. A dual-radiomics model for overall survival prediction in early-stage NSCLC patient using pre-treatment CT images. Zhang R; Zhu H; Chen M; Sang W; Lu K; Li Z; Wang C; Zhang L; Yin FF; Yang Z Front Oncol; 2024; 14():1419621. PubMed ID: 39206157 [TBL] [Abstract][Full Text] [Related]
10. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
11. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer. Shayesteh S; Nazari M; Salahshour A; Sandoughdaran S; Hajianfar G; Khateri M; Yaghobi Joybari A; Jozian F; Fatehi Feyzabad SH; Arabi H; Shiri I; Zaidi H Med Phys; 2021 Jul; 48(7):3691-3701. PubMed ID: 33894058 [TBL] [Abstract][Full Text] [Related]
12. Complete Pathologic Response Prediction by Radiomics Wavelets Features of Unenhanced CT Simulation Images in Locally Advanced Rectal Cancer Patients after Neoadjuvant Chemoradiation. Lutsyk M; Gourevich K; Keidar Z Isr Med Assoc J; 2021 Dec; 23(12):805-810. PubMed ID: 34954921 [TBL] [Abstract][Full Text] [Related]
13. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
14. An investigation of machine learning methods in delta-radiomics feature analysis. Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910 [TBL] [Abstract][Full Text] [Related]
15. Advancing NSCLC pathological subtype prediction with interpretable machine learning: a comprehensive radiomics-based approach. Kuang B; Zhang J; Zhang M; Xia H; Qiang G; Zhang J Front Med (Lausanne); 2024; 11():1413990. PubMed ID: 38841579 [TBL] [Abstract][Full Text] [Related]
16. Usefulness of texture features of apparent diffusion coefficient maps in predicting chemoradiotherapy response in muscle-invasive bladder cancer. Kimura K; Yoshida S; Tsuchiya J; Yamada I; Tanaka H; Yokoyama M; Matsuoka Y; Yoshimura R; Tateishi U; Fujii Y Eur Radiol; 2022 Jan; 32(1):671-679. PubMed ID: 34120230 [TBL] [Abstract][Full Text] [Related]
17. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984 [TBL] [Abstract][Full Text] [Related]
18. Explainable Machine Learning with Pairwise Interactions for Predicting Conversion from Mild Cognitive Impairment to Alzheimer's Disease Utilizing Multi-Modalities Data. Cai J; Hu W; Ma J; Si A; Chen S; Gong L; Zhang Y; Yan H; Chen F; For The Alzheimer's Disease Neuroimaging Initiative Brain Sci; 2023 Oct; 13(11):. PubMed ID: 38002495 [TBL] [Abstract][Full Text] [Related]
19. Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics. Jin X; Zheng X; Chen D; Jin J; Zhu G; Deng X; Han C; Gong C; Zhou Y; Liu C; Xie C Eur Radiol; 2019 Nov; 29(11):6080-6088. PubMed ID: 31028447 [TBL] [Abstract][Full Text] [Related]
20. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]