These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 36569056)
41. Pse-T2, an Antimicrobial Peptide with High-Level, Broad-Spectrum Antimicrobial Potency and Skin Biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa Infection. Kang HK; Seo CH; Luchian T; Park Y Antimicrob Agents Chemother; 2018 Dec; 62(12):. PubMed ID: 30323036 [TBL] [Abstract][Full Text] [Related]
42. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Findlay B; Zhanel GG; Schweizer F Antimicrob Agents Chemother; 2010 Oct; 54(10):4049-58. PubMed ID: 20696877 [TBL] [Abstract][Full Text] [Related]
43. HJH-1, a Broad-Spectrum Antimicrobial Activity and Low Cytotoxicity Antimicrobial Peptide. Wang Q; Xu Y; Dong M; Hang B; Sun Y; Wang L; Wang Y; Hu J; Zhang W Molecules; 2018 Aug; 23(8):. PubMed ID: 30110916 [TBL] [Abstract][Full Text] [Related]
44. The evaluation of the synergistic antimicrobial and antibiofilm activity of AamAP1-Lysine with conventional antibiotics against representative resistant strains of both Gram-positive and Gram-negative bacteria. Almaaytah A; Abualhaijaa A; Alqudah O Infect Drug Resist; 2019; 12():1371-1380. PubMed ID: 31213855 [No Abstract] [Full Text] [Related]
45. Binding Properties of DNA and Antimicrobial Peptide Chensinin-1b Containing Lipophilic Alkyl Tails. Dong W; Luo X; Sun Y; Li Y; Wang C; Guan Y; Shang D J Fluoresc; 2020 Jan; 30(1):131-142. PubMed ID: 31925652 [TBL] [Abstract][Full Text] [Related]
46. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Almaaytah A; Qaoud MT; Abualhaijaa A; Al-Balas Q; Alzoubi KH Infect Drug Resist; 2018; 11():835-847. PubMed ID: 29910626 [TBL] [Abstract][Full Text] [Related]
47. Identification of new dermaseptins with self-assembly tendency: membrane disruption, biofilm eradication, and infected wound healing efficacy. Song X; Pan H; Wang H; Liao X; Sun D; Xu K; Chen T; Zhang X; Wu M; Wu D; Gao Y Acta Biomater; 2020 Jun; 109():208-219. PubMed ID: 32276085 [TBL] [Abstract][Full Text] [Related]
48. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. Ma L; Ye X; Sun P; Xu P; Wang L; Liu Z; Huang X; Bai Z; Zhou C EBioMedicine; 2020 May; 55():102775. PubMed ID: 32403086 [TBL] [Abstract][Full Text] [Related]
49. Design of Antimicrobial Peptides with Cell-Selective Activity and Membrane-Acting Mechanism against Drug-Resistant Bacteria. Park SC; Son H; Kim YM; Lee JK; Park S; Lim HS; Lee JR; Jang MK Antibiotics (Basel); 2022 Nov; 11(11):. PubMed ID: 36421263 [TBL] [Abstract][Full Text] [Related]
50. Study on the effects of different dimerization positions on biological activity of partial d-Amino acid substitution analogues of Anoplin. Zhong C; Gou S; Liu T; Zhu Y; Zhu N; Liu H; Zhang Y; Xie J; Guo X; Ni J Microb Pathog; 2020 Feb; 139():103871. PubMed ID: 31733278 [TBL] [Abstract][Full Text] [Related]
51. Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection. Jiang S; Deslouches B; Chen C; Di ME; Di YP mBio; 2019 Apr; 10(2):. PubMed ID: 30967458 [TBL] [Abstract][Full Text] [Related]
52. Lipidation of Antimicrobial Peptides as a Design Strategy for Future Alternatives to Antibiotics. Rounds T; Straus SK Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33353161 [TBL] [Abstract][Full Text] [Related]
53. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Zhong C; Zhang F; Yao J; Zhu Y; Zhu N; Zhang Y; Liu H; Gou S; Ni J Biochem Pharmacol; 2021 Apr; 186():114470. PubMed ID: 33610592 [TBL] [Abstract][Full Text] [Related]
55. In vitro activities of designed antimicrobial peptides against multidrug-resistant cystic fibrosis pathogens. Schwab U; Gilligan P; Jaynes J; Henke D Antimicrob Agents Chemother; 1999 Jun; 43(6):1435-40. PubMed ID: 10348766 [TBL] [Abstract][Full Text] [Related]
56. Lipidated cyclic γ-AApeptides display both antimicrobial and anti-inflammatory activity. Li Y; Smith C; Wu H; Padhee S; Manoj N; Cardiello J; Qiao Q; Cao C; Yin H; Cai J ACS Chem Biol; 2014 Jan; 9(1):211-7. PubMed ID: 24144063 [TBL] [Abstract][Full Text] [Related]
57. Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. Yang M; Zhang C; Zhang MZ; Zhang S BMC Microbiol; 2018 Jun; 18(1):54. PubMed ID: 29871599 [TBL] [Abstract][Full Text] [Related]
58. The Trp-rich Antimicrobial Amphiphiles With Intramolecular Aromatic Interactions for the Treatment of Bacterial Infection. Wang Z; Li Q; Li J; Li J; Shang L; Chou S; Lyu Y; Shan A Front Microbiol; 2021; 12():733441. PubMed ID: 34721331 [TBL] [Abstract][Full Text] [Related]
59. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860 [TBL] [Abstract][Full Text] [Related]
60. Manipulating turn residues on de novo designed β-hairpin peptides for selectivity against drug-resistant bacteria. Tram NDT; Selvarajan V; Boags A; Mukherjee D; Marzinek JK; Cheng B; Jiang ZC; Goh P; Koh JJ; Teo JWP; Bond PJ; Ee PLR Acta Biomater; 2021 Nov; 135():214-224. PubMed ID: 34506975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]