BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36569231)

  • 1. Elucidation of reactive oxygen species scavenging pathways of norbergenin utilizing DFT approaches.
    Haq KU; Rusdipoetra RA; Siswanto I; Suwito H
    R Soc Open Sci; 2022 Dec; 9(12):221349. PubMed ID: 36569231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: a computational review.
    Mittal A; Vashistha VK; Das DK
    Free Radic Res; 2022; 56(5-6):378-397. PubMed ID: 36063087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DFT study on OH radical scavenging activities of eriodictyol, Isosakuranetin and pinocembrin.
    Erdoğan Ş; Özbakır Işın D
    J Biomol Struct Dyn; 2022; 40(21):10802-10811. PubMed ID: 34286668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment.
    Alberto ME; Russo N; Grand A; Galano A
    Phys Chem Chem Phys; 2013 Apr; 15(13):4642-50. PubMed ID: 23423333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Antiradical Activity of Newly Synthesized 4,7-Dihydroxycoumarin Derivatives-Experimental and Kinetic DFT Study.
    Milanović Ž; Dimić D; Žižić M; Milenković D; Marković Z; Avdović E
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the scavenging capacities of phloroglucinol and 2,4,6-trihydroxypyridine towards HO˙ radical: a computational study.
    Milanović Ž; Tošović J; Marković S; Marković Z
    RSC Adv; 2020 Nov; 10(71):43262-43272. PubMed ID: 35519718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychiatric Disorders and Oxidative Injury: Antioxidant Effects of Zolpidem Therapy disclosed
    Bortoli M; Dalla Tiezza M; Muraro C; Pavan C; Ribaudo G; Rodighiero A; Tubaro C; Zagotto G; Orian L
    Comput Struct Biotechnol J; 2019; 17():311-318. PubMed ID: 30867894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radical Scavenging Activity of Puerarin: A Theoretical Study.
    Zhou H; Li X; Shang Y; Chen K
    Antioxidants (Basel); 2019 Nov; 8(12):. PubMed ID: 31779233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A detailed DFT-based study of the free radical scavenging activity and mechanism of daphnetin in physiological environments.
    Boulebd H; Amine Khodja I
    Phytochemistry; 2021 Sep; 189():112831. PubMed ID: 34146991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK.
    Galano A; Tan DX; Reiter RJ
    J Pineal Res; 2013 Apr; 54(3):245-57. PubMed ID: 22998574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and Experimental Investigation of the Antioxidation Mechanism of Loureirin C by Radical Scavenging for Treatment of Stroke.
    Liu YS; Zhang GY; Hou Y
    Molecules; 2023 Jan; 28(1):. PubMed ID: 36615573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors.
    Jeremić S; Amić A; Stanojević-Pirković M; Marković Z
    Org Biomol Chem; 2018 Mar; 16(11):1890-1902. PubMed ID: 29479603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidative mechanisms in chlorogenic acid.
    Tošović J; Marković S; Dimitrić Marković JM; Mojović M; Milenković D
    Food Chem; 2017 Dec; 237():390-398. PubMed ID: 28764012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into Antioxidant and Photoprotective Properties of Natural Compounds from Marine Fungus.
    Dao DQ; Phan TTT; Nguyen TLA; Trinh PTH; Tran TTV; Lee JS; Shin HJ; Choi BK
    J Chem Inf Model; 2020 Mar; 60(3):1329-1351. PubMed ID: 31999921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on the radical scavenging activity and mechanism of four kinds of Gnetin molecule.
    Shang Y; Li X; Li Z; Zhou J; Qu L; Chen K
    Food Chem; 2022 Jun; 378():131975. PubMed ID: 35033703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study on the antioxidant property of coumarin-fused coumarins.
    Wang G; Liu Y; Zhang L; An L; Chen R; Liu Y; Luo Q; Li Y; Wang H; Xue Y
    Food Chem; 2020 Jan; 304():125446. PubMed ID: 31491715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of solvent polarity on the antioxidant potential of echinatin, a retrochalcone, towards various ROS: a DFT thermodynamic study.
    Mittal A; Kakkar R
    Free Radic Res; 2020 Oct; 54(10):777-786. PubMed ID: 33183109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Antioxidant Capability of Higenamine: Insights from Theory.
    Romeo I; Parise A; Galano A; Russo N; Alvarez-Idaboy JR; Marino T
    Antioxidants (Basel); 2020 Apr; 9(5):. PubMed ID: 32344940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the antioxidant and radical scavenging activities of some phenolic Schiff bases with different free radicals.
    Marković Z; Đorović J; Petrović ZD; Petrović VP; Simijonović D
    J Mol Model; 2015 Nov; 21(11):293. PubMed ID: 26508294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Mechanical Predictions of the Antioxidant Capability of Moracin C Isomers.
    Parise A; De Simone BC; Marino T; Toscano M; Russo N
    Front Chem; 2021; 9():666647. PubMed ID: 33968905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.