These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36569233)

  • 1. Macroevolution in axial morphospace: innovations accompanying the transition to marine environments in elapid snakes.
    Sherratt E; Nash-Hahn T; Nankivell JH; Rasmussen AR; Hampton PM; Sanders KL
    R Soc Open Sci; 2022 Dec; 9(12):221087. PubMed ID: 36569233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertebral evolution and ontogenetic allometry: The developmental basis of extreme body shape divergence in microcephalic sea snakes.
    Sherratt E; Coutts FJ; Rasmussen AR; Sanders KL
    Evol Dev; 2019 May; 21(3):135-144. PubMed ID: 30791197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of intracolumnar size variation inform the heterochronic mechanisms underlying extreme body shape divergence in microcephalic sea snakes.
    Sherratt E; Sanders KL
    Evol Dev; 2020 May; 22(3):283-290. PubMed ID: 31730744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic specialization drives morphological evolution in sea snakes.
    Sherratt E; Rasmussen AR; Sanders KL
    R Soc Open Sci; 2018 Mar; 5(3):172141. PubMed ID: 29657807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiations.
    Sanders KL; Lee MS; Leys R; Foster R; Keogh JS
    J Evol Biol; 2008 May; 21(3):682-95. PubMed ID: 18384538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regionalization of the vertebral column and its correlation with heart position in snakes: Implications for evolutionary pathways and morphological diversification.
    Hampton PM; Meik JM
    Evol Dev; 2024 Jan; 26(1):e12460. PubMed ID: 37804483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterochronic Shifts Mediate Ecomorphological Convergence in Skull Shape of Microcephalic Sea Snakes.
    Sherratt E; Sanders KL; Watson A; Hutchinson MN; Lee MSY; Palci A
    Integr Comp Biol; 2019 Sep; 59(3):616-624. PubMed ID: 31065670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL; Lee MS; Mumpuni ; Bertozzi T; Rasmussen AR
    Mol Phylogenet Evol; 2013 Mar; 66(3):575-91. PubMed ID: 23026811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification rates and phenotypic evolution in venomous snakes (Elapidae).
    Lee MS; Sanders KL; King B; Palci A
    R Soc Open Sci; 2016 Jan; 3(1):150277. PubMed ID: 26909162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling ecological innovation and speciation in sea snakes (Elapidae, Hydrophiinae, Hydrophiini).
    Sanders KL; Mumpuni ; Lee MS
    J Evol Biol; 2010 Dec; 23(12):2685-93. PubMed ID: 21077974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New chromosome-scale genomes provide insights into marine adaptations of sea snakes (Hydrophis: Elapidae).
    Ludington AJ; Hammond JM; Breen J; Deveson IW; Sanders KL
    BMC Biol; 2023 Dec; 21(1):284. PubMed ID: 38066641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Genome of Shaw's Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment.
    Peng C; Ren JL; Deng C; Jiang D; Wang J; Qu J; Chang J; Yan C; Jiang K; Murphy RW; Wu DD; Li JT
    Mol Biol Evol; 2020 Jun; 37(6):1744-1760. PubMed ID: 32077944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demographic analyses of marine and terrestrial snakes (Elapidae) using whole genome sequences.
    Ludington AJ; Sanders KL
    Mol Ecol; 2021 Jan; 30(2):545-554. PubMed ID: 33170980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes.
    Simões BF; Gower DJ; Rasmussen AR; Sarker MAR; Fry GC; Casewell NR; Harrison RA; Hart NS; Partridge JC; Hunt DM; Chang BS; Pisani D; Sanders KL
    Curr Biol; 2020 Jul; 30(13):2608-2615.e4. PubMed ID: 32470360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the Binding of Venoms from Aquatic Elapids to the Nicotinic Acetylcholine Receptor Orthosteric Site of Different Prey Models.
    Harris RJ; Youngman NJ; Zdenek CN; Huynh TM; Nouwens A; Hodgson WC; Harrich D; Dunstan N; Portes-Junior JA; Fry BG
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of scale sensilla in the transition from land to sea in elapid snakes.
    Crowe-Riddell JM; Snelling EP; Watson AP; Suh AK; Partridge JC; Sanders KL
    Open Biol; 2016 Jun; 6(6):. PubMed ID: 27278646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the Noncoding Features of Sea Snake Mitochondrial Genomes within Elapidae.
    Xiaokaiti X; Hashiguchi Y; Ota H; Kumazawa Y
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent innovation in the evolution of paddle-shaped tails in viviparous sea snakes (Elapidae: Hydrophiinae).
    Sanders KL; Rasmussen AR; Elmberg J
    Integr Comp Biol; 2012 Aug; 52(2):311-20. PubMed ID: 22634358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Snakes Find Prey Underwater: Sea Snakes Use Visual and Chemical Cues for Foraging.
    Kutsuma R; Sasai T; Kishida T
    Zoolog Sci; 2018 Dec; 35(6):483-486. PubMed ID: 30520357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic relationships of terrestrial Australo-Papuan elapid snakes (subfamily Hydrophiinae) based on cytochrome b and 16S rRNA sequences.
    Keogh JS; Shine R; Donnellan S
    Mol Phylogenet Evol; 1998 Aug; 10(1):67-81. PubMed ID: 9751918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.