These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36569478)

  • 1. Theoretical prediction on the hydrolysis rate of the new types of nerve agents: A density functional study.
    Rashid MAM; Lee B; Kim KH; Jeong K
    Toxicol Rep; 2023; 10():27-31. PubMed ID: 36569478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor Pressure and Toxicity Prediction for Novichok Agent Candidates Using Machine Learning Model: Preparation for Unascertained Nerve Agents after Chemical Weapons Convention Schedule 1 Update.
    Jeong K; Lee JY; Woo S; Kim D; Jeon Y; Ryu TI; Hwang SR; Jeong WH
    Chem Res Toxicol; 2022 May; 35(5):774-781. PubMed ID: 35317551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of the electron ionization mass spectra of the Novichok nerve agent.
    Chernicharo FCS; Modesto-Costa L; Borges I
    J Mass Spectrom; 2021 Sep; 56(9):e4779. PubMed ID: 34407561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precisely predicting the
    Jeong K; Ryu TI; Hwang SR; Cho Y; Lim KC; Yoon UH; Lee JY; Yoon YW; Jeong HJ
    Sci Rep; 2022 Nov; 12(1):20288. PubMed ID: 36434133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The prediction of hydrolysis and biodegradation of Novichoks using in silico toxicology methods.
    Noga M; Michalska A; Jurowski K
    Sci Total Environ; 2023 Sep; 890():164241. PubMed ID: 37236459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of the molecular aspect of the suspected novichok agent A234 of the Skripal poisoning.
    Bhakhoa H; Rhyman L; Ramasami P
    R Soc Open Sci; 2019 Feb; 6(2):181831. PubMed ID: 30891291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Degradation of Novichok Nerve Agents by the Zirconium Metal-Organic Framework MOF-808.
    de Koning MC; Vieira Soares C; van Grol M; Bross RPT; Maurin G
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9222-9230. PubMed ID: 35138813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prediction of hydrolysis and biodegradation of organophosphorus-based chemical warfare agents (G-series and V-series) using toxicology in silico methods.
    Noga M; Michalska A; Jurowski K
    Ecotoxicol Environ Saf; 2024 Mar; 272():116018. PubMed ID: 38325275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study on the toxicity of 'Novichok' agent candidates.
    Jeong K; Choi J
    R Soc Open Sci; 2019 Aug; 6(8):190414. PubMed ID: 31598242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Effects of Node Topology, Connectivity, and Metal Identity on the Binding of Nerve Agents and Their Hydrolysis Products in Metal-Organic Frameworks.
    Mendonca ML; Ray D; Cramer CJ; Snurr RQ
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35657-35675. PubMed ID: 32627522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Screening for Improved Nerve Agent Simulants and Insights into Organophosphate Hydrolysis Reactions from DFT and QSAR Modeling.
    Mendonca ML; Snurr RQ
    Chemistry; 2019 Jul; 25(39):9217-9229. PubMed ID: 30924220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface.
    Gon Ryu S; Wan Lee H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(14):1417-27. PubMed ID: 26327407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal-Organic Frameworks.
    Kim HH; Seo JY; Kim H; Jeong S; Baek KY; Kim J; Min S; Kim SH; Jeong K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3782-3792. PubMed ID: 33461292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of the hydrolysis mechanism of A-234; the suspected novichok agent in the Skripal attack.
    Imrit YA; Bhakhoa H; Sergeieva T; Danés S; Savoo N; Elzagheid MI; Rhyman L; Andrada DM; Ramasami P
    RSC Adv; 2020 Jul; 10(47):27884-27893. PubMed ID: 35519147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis and enzymatic degradation of Novichok nerve agents.
    Harvey SP; McMahon LR; Berg FJ
    Heliyon; 2020 Jan; 6(1):e03153. PubMed ID: 32042950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis theory for cisplatin and its analogues based on density functional studies.
    Zhang Y; Guo Z; You XZ
    J Am Chem Soc; 2001 Sep; 123(38):9378-87. PubMed ID: 11562220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimethoxytriadinylation LC-MS/MS of Novichok A-Series Degradation Products in Human Urine.
    Yamaguchi A; Miyaguchi H; Tokeshi M
    Anal Chem; 2022 Mar; 94(11):4658-4665. PubMed ID: 35253439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation pathways of O-alkyl methylphosphonothionocyanidates in the gas phase: toward unambiguous structural characterization of chemicals in the Chemical Weapons Convention framework.
    Saeidian H; Babri M; Ashrafi D; Sarabadani M; Naseri MT
    Anal Bioanal Chem; 2013 Aug; 405(21):6749-59. PubMed ID: 23793396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of phosphotriesterase for decontamination and detoxification of organophosphorus chemical warfare agents.
    Bigley AN; Raushel FM
    Chem Biol Interact; 2019 Aug; 308():80-88. PubMed ID: 31100274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novichok agents: a historical, current, and toxicological perspective.
    Chai PR; Hayes BD; Erickson TB; Boyer EW
    Toxicol Commun; 2018; 2(1):45-48. PubMed ID: 30003185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.