BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 36569912)

  • 1. Sex differences in Guillain Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy and experimental autoimmune neuritis.
    McCombe PA; Hardy TA; Nona RJ; Greer JM
    Front Immunol; 2022; 13():1038411. PubMed ID: 36569912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetics of Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): current knowledge and future directions.
    Blum S; McCombe PA
    J Peripher Nerv Syst; 2014 Jun; 19(2):88-103. PubMed ID: 25039604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberrated levels of cerebrospinal fluid chemokines in Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy.
    Press R; Pashenkov M; Jin JP; Link H
    J Clin Immunol; 2003 Jul; 23(4):259-67. PubMed ID: 12959218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Siponimod ameliorates experimental autoimmune neuritis.
    Uchi T; Konno S; Kihara H; Fujioka T
    J Neuroinflammation; 2023 Feb; 20(1):35. PubMed ID: 36788526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guillain Barré syndrome and other immune mediated neuropathies: diagnosis and classification.
    Eldar AH; Chapman J
    Autoimmun Rev; 2014; 13(4-5):525-30. PubMed ID: 24434363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T cell reactivity to P0, P2, PMP-22, and myelin basic protein in patients with Guillain-Barre syndrome and chronic inflammatory demyelinating polyradiculoneuropathy.
    Csurhes PA; Sullivan AA; Green K; Pender MP; McCombe PA
    J Neurol Neurosurg Psychiatry; 2005 Oct; 76(10):1431-9. PubMed ID: 16170091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of vasoactive intestinal peptide in the rat model of experimental autoimmune neuritis and the implications for treatment of acute inflammatory demyelinating polyradiculoneuropathy or Guillain-Barré syndrome.
    Jiao H; Ren H
    Drug Des Devel Ther; 2018; 12():3817-3824. PubMed ID: 30464413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of HLA associations in male and female patients with Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP).
    McCombe PA; Csurhes PA; Greer JM
    J Neuroimmunol; 2006 Nov; 180(1-2):172-7. PubMed ID: 16935351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokine production and the pathogenesis of experimental autoimmune neuritis and Guillain-Barré syndrome.
    Zhu J; Mix E; Link H
    J Neuroimmunol; 1998 Apr; 84(1):40-52. PubMed ID: 9600707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Immunological and Therapeutic Insights in Guillain-Barré Syndrome and CIDP.
    Querol L; Lleixà C
    Neurotherapeutics; 2021 Oct; 18(4):2222-2235. PubMed ID: 34549385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Th1/Th2/Th17/Treg cytokines in Guillain-Barré syndrome and experimental autoimmune neuritis.
    Zhang HL; Zheng XY; Zhu J
    Cytokine Growth Factor Rev; 2013 Oct; 24(5):443-53. PubMed ID: 23791985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal models of autoimmune neuropathy.
    Soliven B
    ILAR J; 2014; 54(3):282-90. PubMed ID: 24615441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pain hypersensitivity in rats with experimental autoimmune neuritis, an animal model of human inflammatory demyelinating neuropathy.
    Moalem-Taylor G; Allbutt HN; Iordanova MD; Tracey DJ
    Brain Behav Immun; 2007 Jul; 21(5):699-710. PubMed ID: 17005365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular immunity in inflammatory autoimmune neuropathies.
    Mäurer M; Toyka KV; Gold R
    Rev Neurol (Paris); 2002 Dec; 158(12 Pt 2):S7-15. PubMed ID: 12690655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Immunopathology and treatments of Guillain-Barré syndrome and of chronic inflammatory demyelinating polyneuropathy].
    Radziwill AJ; Kuntzer T; Steck AJ
    Rev Neurol (Paris); 2002 Mar; 158(3):301-10. PubMed ID: 11976589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCR2 gene deletion and pharmacologic blockade ameliorate a severe murine experimental autoimmune neuritis model of Guillain-Barré syndrome.
    Yuan F; Yosef N; Lakshmana Reddy C; Huang A; Chiang SC; Tithi HR; Ubogu EE
    PLoS One; 2014; 9(3):e90463. PubMed ID: 24632828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic cells in the cerebrospinal fluid and peripheral nerves in Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy.
    Press R; Nennesmo I; Kouwenhoven M; Huang YM; Link H; Pashenkov M
    J Neuroimmunol; 2005 Feb; 159(1-2):165-76. PubMed ID: 15652416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial or Harmful Role of Macrophages in Guillain-Barré Syndrome and Experimental Autoimmune Neuritis.
    Shen D; Chu F; Lang Y; Geng Y; Zheng X; Zhu J; Liu K
    Mediators Inflamm; 2018; 2018():4286364. PubMed ID: 29853789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenesis of chronic inflammatory demyelinating polyradiculoneuropathy.
    Hughes RA; Allen D; Makowska A; Gregson NA
    J Peripher Nerv Syst; 2006 Mar; 11(1):30-46. PubMed ID: 16519780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute/chronic inflammatory polyradiculoneuropathy.
    Miranda C; Brannagan TH
    Handb Clin Neurol; 2023; 195():619-633. PubMed ID: 37562890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.