These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36570065)

  • 1. Cost-Effective Solution of Remote Photoplethysmography Capable of Real-Time, Multi-Subject Monitoring with Social Distancing.
    Huang HW; Rupp P; Chen J; Kemkar A; Khandelwal N; Ballinger I; Chai P; Traverso G
    Proc IEEE Sens; 2022; 2022():. PubMed ID: 36570065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of illuminance intensity on the green channel of remote photoplethysmography (rPPG) signals.
    Guler S; Ozturk O; Golparvar A; Dogan H; Yapici MK
    Phys Eng Sci Med; 2022 Dec; 45(4):1317-1323. PubMed ID: 36036875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Monitoring of Vital Signs Using Cameras: A Systematic Review.
    Selvaraju V; Spicher N; Wang J; Ganapathy N; Warnecke JM; Leonhardt S; Swaminathan R; Deserno TM
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights on super-high resolution for video-based heart rate estimation with a semi-blind source separation method.
    Song R; Zhang S; Cheng J; Li C; Chen X
    Comput Biol Med; 2020 Jan; 116():103535. PubMed ID: 31760272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contactless Blood Pressure Measurement Via Remote Photoplethysmography With Synthetic Data Generation Using Generative Adversarial Networks.
    Wu BF; Chiu LW; Wu YC; Lai CC; Cheng HM; Chu PH
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):621-632. PubMed ID: 37037253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote heart rate monitoring - Assessment of the FacereaderĀ rPPg by Noldus.
    Benedetto S; Caldato C; Greenwood DC; Bartoli N; Pensabene V; Actis P
    PLoS One; 2019; 14(11):e0225592. PubMed ID: 31756239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Region of Interest Selection in Remote Photoplethysmography: Proof-of-Concept Study.
    Kiddle A; Barham H; Wegerif S; Petronzio C
    JMIR Form Res; 2023 Mar; 7():e44575. PubMed ID: 36995742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a Camera-Based Monitoring Solution Against Regulated Medical Devices to Measure Heart Rate, Respiratory Rate, Oxygen Saturation, and Blood Pressure.
    Talukdar D; De Deus LF; Sehgal N
    Cureus; 2022 Nov; 14(11):e31649. PubMed ID: 36540478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda.
    Cheng CH; Wong KL; Chin JW; Chan TT; So RHY
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of biases in remote photoplethysmography methods.
    Dasari A; Prakash SKA; Jeni LA; Tucker CS
    NPJ Digit Med; 2021 Jun; 4(1):91. PubMed ID: 34083724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Remote Photoplethysmography Measurement Conditions toward Telemedicine Applications.
    Tohma A; Nishikawa M; Hashimoto T; Yamazaki Y; Sun G
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal digital filter selection for remote photoplethysmography (rPPG) signal conditioning.
    Guler S; Golparvar A; Ozturk O; Dogan H; Kaya Yapici M
    Biomed Phys Eng Express; 2023 Jan; 9(2):. PubMed ID: 36596253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood Pressure Measurement: From Cuff-Based to Contactless Monitoring.
    Man PK; Cheung KL; Sangsiri N; Shek WJ; Wong KL; Chin JW; Chan TT; So RH
    Healthcare (Basel); 2022 Oct; 10(10):. PubMed ID: 36292560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GRGB rPPG: An Efficient Low-Complexity Remote Photoplethysmography-Based Algorithm for Heart Rate Estimation.
    Haugg F; Elgendi M; Menon C
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating Visual Photoplethysmography Method.
    Talukdar D; de Deus LF; Sehgal N
    Cureus; 2022 Jul; 14(7):e26871. PubMed ID: 35978747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Vital Signs by Lifelight Software in Comparison to Standard of Care Multisite Development (VISION-MD): Protocol for an Observational Study.
    Wiffen L; Brown T; Brogaard Maczka A; Kapoor M; Pearce L; Chauhan M; Chauhan AJ; Saxena M;
    JMIR Res Protoc; 2023 Jan; 12():e41533. PubMed ID: 36630158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation.
    Lokendra B; Puneet G
    Comput Biol Med; 2022 Feb; 141():105146. PubMed ID: 34942393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fusion Method to Estimate Heart Rate from Facial Videos Based on RPPG and RBCG.
    Lee H; Cho A; Whang M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote Photoplethysmography Is an Accurate Method to Remotely Measure Respiratory Rate: A Hospital-Based Trial.
    Allado E; Poussel M; Renno J; Moussu A; Hily O; Temperelli M; Albuisson E; Chenuel B
    J Clin Med; 2022 Jun; 11(13):. PubMed ID: 35806932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pyVHR: a Python framework for remote photoplethysmography.
    Boccignone G; Conte D; Cuculo V; D'Amelio A; Grossi G; Lanzarotti R; Mortara E
    PeerJ Comput Sci; 2022; 8():e929. PubMed ID: 35494872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.