These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 36570318)
1. Network Science and Group Fusion Similarity-Based Searching to Explore the Chemical Space of Antiparasitic Peptides. Ayala-Ruano S; Marrero-Ponce Y; Aguilera-Mendoza L; Pérez N; Agüero-Chapin G; Antunes A; Aguilar AC ACS Omega; 2022 Dec; 7(50):46012-46036. PubMed ID: 36570318 [TBL] [Abstract][Full Text] [Related]
2. A Novel Network Science and Similarity-Searching-Based Approach for Discovering Potential Tumor-Homing Peptides from Antimicrobials. Romero M; Marrero-Ponce Y; Rodríguez H; Agüero-Chapin G; Antunes A; Aguilera-Mendoza L; Martinez-Rios F Antibiotics (Basel); 2022 Mar; 11(3):. PubMed ID: 35326864 [TBL] [Abstract][Full Text] [Related]
3. Unraveling the hemolytic toxicity tapestry of peptides using chemical space complex networks. Castillo-Mendieta K; Agüero-Chapin G; Mora JR; Pérez N; Contreras-Torres E; Valdes-Martini JR; Martinez-Rios F; Marrero-Ponce Y Toxicol Sci; 2024 Dec; 202(2):236-249. PubMed ID: 39254655 [TBL] [Abstract][Full Text] [Related]
4. StarPep Toolbox: an open-source software to assist chemical space analysis of bioactive peptides and their functions using complex networks. Aguilera-Mendoza L; Ayala-Ruano S; Martinez-Rios F; Chavez E; García-Jacas CR; Brizuela CA; Marrero-Ponce Y Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37603724 [TBL] [Abstract][Full Text] [Related]
5. Complex Networks Analyses of Antibiofilm Peptides: An Emerging Tool for Next-Generation Antimicrobials' Discovery. Agüero-Chapin G; Antunes A; Mora JR; Pérez N; Contreras-Torres E; Valdes-Martini JR; Martinez-Rios F; Zambrano CH; Marrero-Ponce Y Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107109 [TBL] [Abstract][Full Text] [Related]
6. Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach. Aguilera-Mendoza L; Marrero-Ponce Y; García-Jacas CR; Chavez E; Beltran JA; Guillen-Ramirez HA; Brizuela CA Sci Rep; 2020 Oct; 10(1):18074. PubMed ID: 33093586 [TBL] [Abstract][Full Text] [Related]
7. Graph-based data integration from bioactive peptide databases of pharmaceutical interest: toward an organized collection enabling visual network analysis. Aguilera-Mendoza L; Marrero-Ponce Y; Beltran JA; Tellez Ibarra R; Guillen-Ramirez HA; Brizuela CA Bioinformatics; 2019 Nov; 35(22):4739-4747. PubMed ID: 30994884 [TBL] [Abstract][Full Text] [Related]
8. Alignment-Free Antimicrobial Peptide Predictors: Improving Performance by a Thorough Analysis of the Largest Available Data Set. Pinacho-Castellanos SA; García-Jacas CR; Gilson MK; Brizuela CA J Chem Inf Model; 2021 Jun; 61(6):3141-3157. PubMed ID: 34081438 [TBL] [Abstract][Full Text] [Related]
9. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
10. Multiquery Similarity Searching Models: An Alternative Approach for Predicting Hemolytic Activity from Peptide Sequence. Castillo-Mendieta K; Agüero-Chapin G; Marquez E; Perez-Castillo Y; Barigye SJ; Pérez-Cárdenas M; Peréz-Giménez F; Marrero-Ponce Y Chem Res Toxicol; 2024 Apr; 37(4):580-589. PubMed ID: 38501392 [TBL] [Abstract][Full Text] [Related]
12. PredAPP: Predicting Anti-Parasitic Peptides with Undersampling and Ensemble Approaches. Zhang W; Xia E; Dai R; Tang W; Bin Y; Xia J Interdiscip Sci; 2022 Mar; 14(1):258-268. PubMed ID: 34608613 [TBL] [Abstract][Full Text] [Related]
13. Innovative Alignment-Based Method for Antiviral Peptide Prediction. de Llano García D; Marrero-Ponce Y; Agüero-Chapin G; Ferri FJ; Antunes A; Martinez-Rios F; Rodríguez H Antibiotics (Basel); 2024 Aug; 13(8):. PubMed ID: 39200068 [TBL] [Abstract][Full Text] [Related]
14. ABP-Finder: A Tool to Identify Antibacterial Peptides and the Gram-Staining Type of Targeted Bacteria. Ruiz-Blanco YB; Agüero-Chapin G; Romero-Molina S; Antunes A; Olari LR; Spellerberg B; Münch J; Sanchez-Garcia E Antibiotics (Basel); 2022 Nov; 11(12):. PubMed ID: 36551365 [TBL] [Abstract][Full Text] [Related]
15. i2APP: A Two-Step Machine Learning Framework For Antiparasitic Peptides Identification. Jiang M; Zhang R; Xia Y; Jia G; Yin Y; Wang P; Wu J; Ge R Front Genet; 2022; 13():884589. PubMed ID: 35571057 [TBL] [Abstract][Full Text] [Related]
16. Development and use of a Cytoscape app for GRNCOP2. Díaz-Montaña JJ; Díaz-Díaz N; Barranco CD; Ponzoni I Comput Methods Programs Biomed; 2019 Aug; 177():211-218. PubMed ID: 31319950 [TBL] [Abstract][Full Text] [Related]
18. ACEP: improving antimicrobial peptides recognition through automatic feature fusion and amino acid embedding. Fu H; Cao Z; Li M; Wang S BMC Genomics; 2020 Aug; 21(1):597. PubMed ID: 32859150 [TBL] [Abstract][Full Text] [Related]
19. Encodings and models for antimicrobial peptide classification for multi-resistant pathogens. Spänig S; Heider D BioData Min; 2019; 12():7. PubMed ID: 30867681 [TBL] [Abstract][Full Text] [Related]