These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36570319)

  • 1. Analysis of Different Organic Rankine and Kalina Cycles for Waste Heat Recovery in the Iron and Steel Industry.
    Atashbozorg D; Arasteh AM; Salehi G; Azad MT
    ACS Omega; 2022 Dec; 7(50):46099-46117. PubMed ID: 36570319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy and Entransy Dissipation Analysis of a Basic Organic Rankine Cycles (ORCs) to Recover Low-Grade Waste Heat Using Mixture Working Fluids.
    Feng YQ; Luo QH; Wang Q; Wang S; He ZX; Zhang W; Wang X; An QS
    Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exergy Analysis of Two-Stage Organic Rankine Cycle Power Generation System.
    Liu G; Wang Q; Xu J; Miao Z
    Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33396767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery.
    Liu P; Shu G; Tian H; Wang X
    Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle.
    Huang S; Li C; Tan T; Fu P; Wang L; Yang Y
    Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Use of Organic Rankine Cycles for Recovering the Heat Lost in the Compression Area of a Cryogenic Air Separation Unit.
    Ionita C; Bucsa S; Serban A; Dobre C; Dobrovicescu A
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of exergy and exergy economic evaluation of different geothermal cogeneration systems for optimal waste energy recovery.
    Guo Q; Khanmohammadi S
    Chemosphere; 2023 Oct; 339():139586. PubMed ID: 37516323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configuration Selection of the Multi-Loop Organic Rankine Cycle for Recovering Energy from a Single Source.
    Li Y; Tang T
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical assessment of novel organic Rankine cycle driven cascade refrigeration system using environmental friendly refrigerants: 4E and optimization approaches.
    Bhuvaneshwaran K; Govindasamy PK
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):35096-35114. PubMed ID: 36525184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exergoeconomic analysis and multi-objective optimization of ORC configurations via Taguchi-Grey Relational Methods.
    Özdemir Küçük E; Kılıç M
    Heliyon; 2023 Apr; 9(4):e15007. PubMed ID: 37064436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic Investigation of an Integrated Solar Combined Cycle with an ORC System.
    Wang S; Fu Z
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids.
    Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J
    Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Objective Optimization of the Basic and Regenerative ORC Integrated with Working Fluid Selection.
    Zhou Y; Ruan J; Hong G; Miao Z
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery
    Aboelazayem O; Gadalla M; Alhajri I; Saha B
    Renew Energy; 2021 Feb; 164():433-443. PubMed ID: 32963424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing sustainable operational conditions of a bottoming organic Rankine cycle using zeotropic mixtures: An energy-emergy approach.
    Ochoa GV; Caballero AP; Castilla DV
    Heliyon; 2023 Jan; 9(1):e12521. PubMed ID: 36820171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing thermodynamic performance with an advanced combined power and refrigeration cycle with dual LNG cold energy utilization.
    Baigh TA; Saif MJ; Mustakim A; Nanzeeba F; Khan Y; Ehsan MM
    Heliyon; 2024 Aug; 10(15):e35748. PubMed ID: 39170498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of the energy, exergetic and thermo-economic performance of a novelty combined Brayton S-CO
    Gutierrez JC; Ochoa GV; Duarte-Forero J
    Heliyon; 2020 Jul; 6(7):e04459. PubMed ID: 32695919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources.
    Oyekale J; Emagbetere E
    Heliyon; 2022 Jul; 8(7):e09833. PubMed ID: 35815127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation of a 300 kW Organic Rankine Cycle Unit with Radial Turbine for Low-Grade Waste Heat Recovery.
    Wang R; Kuang G; Zhu L; Wang S; Zhao J
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Exergy-Based Analysis of an Organic Rankine Cycle (ORC) for Waste Heat Recovery.
    Fergani Z; Morosuk T
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.