These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36570709)

  • 21. Critical Role of the Subways in the Initial Spread of SARS-CoV-2 in New York City.
    Harris JE
    Front Public Health; 2021; 9():754767. PubMed ID: 35004575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factor's affecting safe emergency evacuation of subways in Iran: findings of a qualitative study.
    Nouri F; Khorasani-Zavareh D; Mohammadi R
    J Inj Violence Res; 2020 Apr; 12(2):. PubMed ID: 32319428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Older Adults' Avoidance of Public Transportation after the Outbreak of COVID-19: Korean Subway Evidence.
    Park B; Cho J
    Healthcare (Basel); 2021 Apr; 9(4):. PubMed ID: 33920432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the dynamic impacts of COVID-19 on metro ridership: An empirical analysis of Beijing and Shanghai, China.
    Jiang S; Cai C
    Transp Policy (Oxf); 2022 Oct; 127():158-170. PubMed ID: 36097611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What can bring transit ridership back: An econometric study on the potential of usage incentives and operational policies in the Greater Toronto Area.
    Mashrur SM; Wang K; Lavoie B; Habib KN
    Transp Res Part F Traffic Psychol Behav; 2023 May; 95():18-35. PubMed ID: 37035633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. T-Ridership: A web tool for reprogramming public transportation fleets to minimize COVID-19 transmission.
    Imani S; Vahed M; Satodia S; Vahed M
    SoftwareX; 2023 May; 22():101350. PubMed ID: 36969748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of carbon emission reductions promoted by private driving restrictions based on automatic fare collection data in Beijing, China.
    Zhang W; Chen F; Wang Z; Huang J; Wang B
    J Air Waste Manag Assoc; 2017 Nov; 67(11):1249-1257. PubMed ID: 28453402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peak-easing strategies for urban subway operations in the context of COVID-19 epidemic.
    Muren ; Zhang S; Hua L; Yu B
    Transp Res E Logist Transp Rev; 2022 May; 161():102724. PubMed ID: 35492373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Covid-19 and optimal urban transport policy.
    De Borger B; Proost S
    Transp Res Part A Policy Pract; 2022 Sep; 163():20-42. PubMed ID: 35815170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impacts of COVID-19 and pandemic control measures on public transport ridership in European urban areas - The cases of Vienna, Innsbruck, Oslo, and Agder.
    Rasca S; Markvica K; Ivanschitz BP
    Transp Res Interdiscip Perspect; 2021 Jun; 10():100376. PubMed ID: 34514371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impacts of COVID-19 on urban rail transit ridership using the Synthetic Control Method.
    Xin M; Shalaby A; Feng S; Zhao H
    Transp Policy (Oxf); 2021 Sep; 111():1-16. PubMed ID: 36568355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Data-driven analysis of the impact of COVID-19 on Madrid's public transport during each phase of the pandemic.
    Fernández Pozo R; Wilby MR; Vinagre Díaz JJ; Rodríguez González AB
    Cities; 2022 Aug; 127():103723. PubMed ID: 35530724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Social distancing during the COVID-19 pandemic: Potential impact and correlation with asthma.
    Mun SK; Chang M; Hwang BS; Hong SJ; Lee SY; Park SJ; Lee HJ
    Heart Lung; 2024 Jun; 68():18-22. PubMed ID: 38875813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impacts of COVID-19 on public transport ridership in Sweden: Analysis of ticket validations, sales and passenger counts.
    Jenelius E; Cebecauer M
    Transp Res Interdiscip Perspect; 2020 Nov; 8():100242. PubMed ID: 34173478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Risk assessment of COVID-19 infection for subway commuters integrating dynamic changes in passenger numbers.
    Li P; Chen X; Ma C; Zhu C; Lu W
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74715-74724. PubMed ID: 35639325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of COVID-19 epidemic on public transport ridership and frequencies. A case study from Tampere, Finland.
    Tiikkaja H; Viri R
    Transp Res Interdiscip Perspect; 2021 Jun; 10():100348. PubMed ID: 36844005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A paradigm shift in urban mobility: Policy insights from travel before and after COVID-19 to seize the opportunity.
    Thombre A; Agarwal A
    Transp Policy (Oxf); 2021 Sep; 110():335-353. PubMed ID: 36567700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing a desirable fare structure for a bus-subway corridor.
    Liu BZ; Ge YE; Cao K; Jiang X; Meng L; Liu D; Gao Y
    PLoS One; 2017; 12(10):e0184815. PubMed ID: 28981508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating factors affecting university students' use of subway before and after COVID-19 outbreak: A case study in Tehran.
    Maljaee SS; Khadem Sameni M
    J Transp Geogr; 2022 Dec; 105():103461. PubMed ID: 36268272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Hybrid Method for Predicting Traffic Congestion during Peak Hours in the Subway System of Shenzhen.
    Luo Z; Zhang Y; Li L; He B; Li C; Zhu H; Wang W; Ying S; Xi Y
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31881726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.