These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3657106)

  • 1. Direct comparison of muscle force predictions using linear and nonlinear programming.
    Pedersen DR; Brand RA; Cheng C; Arora JS
    J Biomech Eng; 1987 Aug; 109(3):192-9. PubMed ID: 3657106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 2017; 45(1-6):511-547. PubMed ID: 29953387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of antagonistic muscular activity using nonlinear optimization.
    Herzog W; Binding P
    Math Biosci; 1992 Oct; 111(2):217-29. PubMed ID: 1515744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse optimization: functional and physiological considerations related to the force-sharing problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 1997; 25(4-5):371-407. PubMed ID: 9505137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical model calculation of muscle contraction forces: a double linear programming method.
    Bean JC; Chaffin DB; Schultz AB
    J Biomech; 1988; 21(1):59-66. PubMed ID: 3339029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG assisted optimization: a hybrid approach for estimating muscle forces in an indeterminate biomechanical model.
    Cholewicki J; McGill SM
    J Biomech; 1994 Oct; 27(10):1287-9. PubMed ID: 7962016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological prediction of muscle forces--II. Application to isokinetic exercise.
    Kaufman KR; An KN; Litchy WJ; Chao EY
    Neuroscience; 1991; 40(3):793-804. PubMed ID: 2062442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic analysis of the force sharing among synergistic muscles in one- and two-degree-of-freedom models.
    Binding P; Jinha A; Herzog W
    J Biomech; 2000 Nov; 33(11):1423-32. PubMed ID: 10940401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A physiologically based criterion for muscle force predictions on locomotion.
    Crowninshield RD
    Bull Hosp Jt Dis Orthop Inst; 1983; 43(2):164-70. PubMed ID: 6317099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of optimization models that estimate the forces exerted by synergistic muscles.
    Herzog W; Leonard TR
    J Biomech; 1991; 24 Suppl 1():31-9. PubMed ID: 1791180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of muscle and joint forces: a new technique to solve the indeterminate problem.
    An KN; Kwak BM; Chao EY; Morrey BF
    J Biomech Eng; 1984 Nov; 106(4):364-7. PubMed ID: 6513533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of pedal forces in bicycling using optimization methods.
    Redfield R; Hull ML
    J Biomech; 1986; 19(7):523-40. PubMed ID: 3745225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological prediction of muscle forces--I. Theoretical formulation.
    Kaufman KR; An KW; Litchy WJ; Chao EY
    Neuroscience; 1991; 40(3):781-92. PubMed ID: 2062441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic activity of one-joint muscles in three-dimensions using non-linear optimisation.
    Jinha A; Ait-Haddou R; Binding P; Herzog W
    Math Biosci; 2006 Jul; 202(1):57-70. PubMed ID: 16697422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing physiologically realistic individual muscle force estimations by imposing constraints when using optimization techniques.
    Challis JH
    Med Eng Phys; 1997 Apr; 19(3):253-61. PubMed ID: 9239644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A task-specific validation of homogeneous non-linear optimisation approaches.
    Jinha A; Ait-Haddou R; Kaya M; Herzog W
    J Theor Biol; 2009 Aug; 259(4):695-700. PubMed ID: 19406130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints.
    Winters JM; Stark L
    J Biomech; 1988; 21(12):1027-41. PubMed ID: 2577949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of optimization techniques for the prediction of muscle activation patterns during isometric tasks.
    Buchanan TS; Shreeve DA
    J Biomech Eng; 1996 Nov; 118(4):565-74. PubMed ID: 8950661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions.
    Amarantini D; Martin L
    J Biomech; 2004 Sep; 37(9):1393-404. PubMed ID: 15275847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.