These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 3657107)
61. Mechanical behavior of a simple model of an intervertebral disk under compressive loading. Spilker RL J Biomech; 1980; 13(10):895-901. PubMed ID: 7462264 [No Abstract] [Full Text] [Related]
62. Impact of material and morphological parameters on the mechanical response of the lumbar spine - A finite element sensitivity study. Zander T; Dreischarf M; Timm AK; Baumann WW; Schmidt H J Biomech; 2017 Feb; 53():185-190. PubMed ID: 28010945 [TBL] [Abstract][Full Text] [Related]
63. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Goel VK; Monroe BT; Gilbertson LG; Brinckmann P Spine (Phila Pa 1976); 1995 Mar; 20(6):689-98. PubMed ID: 7604345 [TBL] [Abstract][Full Text] [Related]
64. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Natarajan RN; Andersson GB Spine (Phila Pa 1976); 1999 Sep; 24(18):1873-81. PubMed ID: 10515010 [TBL] [Abstract][Full Text] [Related]
65. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? Schmidt H; Galbusera F; Rohlmann A; Shirazi-Adl A J Biomech; 2013 Sep; 46(14):2342-55. PubMed ID: 23962527 [TBL] [Abstract][Full Text] [Related]
66. Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. Williams JR; Natarajan RN; Andersson GB J Biomech; 2007; 40(9):1981-7. PubMed ID: 17156786 [TBL] [Abstract][Full Text] [Related]
67. The mechanical properties of the canine lumbar disc and motion segment. Zimmerman MC; Vuono-Hawkins M; Parsons JR; Carter FM; Gutteling E; Lee CK; Langrana NA Spine (Phila Pa 1976); 1992 Feb; 17(2):213-20. PubMed ID: 1553593 [TBL] [Abstract][Full Text] [Related]
68. Regional annulus fibre orientations used as a tool for the calibration of lumbar intervertebral disc finite element models. Malandrino A; Noailly J; Lacroix D Comput Methods Biomech Biomed Engin; 2013; 16(9):923-8. PubMed ID: 22224724 [TBL] [Abstract][Full Text] [Related]
69. Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria. Bono CM; Khandha A; Vadapalli S; Holekamp S; Goel VK; Garfin SR Spine (Phila Pa 1976); 2007 Feb; 32(4):417-22. PubMed ID: 17304131 [TBL] [Abstract][Full Text] [Related]
70. Influence prediction of injury and vibration on adjacent components of spine using finite element methods. Guo LX; Teo EC J Spinal Disord Tech; 2006 Apr; 19(2):118-24. PubMed ID: 16760786 [TBL] [Abstract][Full Text] [Related]
71. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads. Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332 [TBL] [Abstract][Full Text] [Related]
72. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. Galbusera F; Schmidt H; Noailly J; Malandrino A; Lacroix D; Wilke HJ; Shirazi-Adl A J Mech Behav Biomed Mater; 2011 Oct; 4(7):1234-41. PubMed ID: 21783132 [TBL] [Abstract][Full Text] [Related]
73. Posterior element loads in lumbar motion segments. Miller JA; Haderspeck KA; Schultz AB Spine (Phila Pa 1976); 1983 Apr; 8(3):331-7. PubMed ID: 6623201 [TBL] [Abstract][Full Text] [Related]
74. Biomechanical response of lumbar facet joints under follower preload: a finite element study. Du CF; Yang N; Guo JC; Huang YP; Zhang C BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002 [TBL] [Abstract][Full Text] [Related]
75. Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration. Qasim M; Natarajan RN; An HS; Andersson GB J Biomech; 2014 Jan; 47(1):24-31. PubMed ID: 24231247 [TBL] [Abstract][Full Text] [Related]
76. A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties. Casaroli G; Galbusera F; Jonas R; Schlager B; Wilke HJ; Villa T PLoS One; 2017; 12(5):e0177088. PubMed ID: 28472100 [TBL] [Abstract][Full Text] [Related]
77. The resistance to flexion of the lumbar intervertebral joint. Adams MA; Hutton WC; Stott JR Spine (Phila Pa 1976); 1980; 5(3):245-53. PubMed ID: 7394664 [TBL] [Abstract][Full Text] [Related]
78. Strain in fibers of a lumbar disc. Analysis of the role of lifting in producing disc prolapse. Shirazi-Adl A Spine (Phila Pa 1976); 1989 Jan; 14(1):96-103. PubMed ID: 2913676 [TBL] [Abstract][Full Text] [Related]
79. Patient-Specific Templating of Lumbar Total Disk Replacement to Restore Normal Anatomy and Function. Fattor JA; Hollenbeck JF; Laz PJ; Rullkoetter PJ; Burger EL; Patel VV; Cain CM Orthopedics; 2016; 39(2):97-102. PubMed ID: 27023417 [TBL] [Abstract][Full Text] [Related]
80. Can variations in intervertebral disc height affect the mechanical function of the disc? Lu YM; Hutton WC; Gharpuray VM Spine (Phila Pa 1976); 1996 Oct; 21(19):2208-16; discussion 2217. PubMed ID: 8902964 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]