These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36571162)

  • 21. Detecting genetic association through shortest paths in a bidirected graph.
    Ueki M; Kawasaki Y; Tamiya G;
    Genet Epidemiol; 2017 Sep; 41(6):481-497. PubMed ID: 28626864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive tests for detecting gene-gene and gene-environment interactions.
    Pan W; Basu S; Shen X
    Hum Hered; 2011; 72(2):98-109. PubMed ID: 21934325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tests for Gene-Environment Interactions and Joint Effects With Exposure Misclassification.
    Boonstra PS; Mukherjee B; Gruber SB; Ahn J; Schmit SL; Chatterjee N
    Am J Epidemiol; 2016 Feb; 183(3):237-47. PubMed ID: 26755675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A combination test for detection of gene-environment interaction in cohort studies.
    Coombes B; Basu S; McGue M
    Genet Epidemiol; 2017 Jul; 41(5):396-412. PubMed ID: 28370330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide investigation of gene-environment interactions in colorectal cancer.
    Siegert S; Hampe J; Schafmayer C; von Schönfels W; Egberts JH; Försti A; Chen B; Lascorz J; Hemminki K; Franke A; Nothnagel M; Nöthlings U; Krawczak M
    Hum Genet; 2013 Feb; 132(2):219-31. PubMed ID: 23114982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening and replication using the same data set: testing strategies for family-based studies in which all probands are affected.
    Murphy A; Weiss ST; Lange C
    PLoS Genet; 2008 Sep; 4(9):e1000197. PubMed ID: 18802462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method combining a random forest-based technique with the modeling of linkage disequilibrium through latent variables, to run multilocus genome-wide association studies.
    Sinoquet C
    BMC Bioinformatics; 2018 Mar; 19(1):106. PubMed ID: 29587628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Powerful Set-Based Gene-Environment Interaction Testing Framework for Complex Diseases.
    Jiao S; Peters U; Berndt S; Bézieau S; Brenner H; Campbell PT; Chan AT; Chang-Claude J; Lemire M; Newcomb PA; Potter JD; Slattery ML; Woods MO; Hsu L
    Genet Epidemiol; 2015 Dec; 39(8):609-18. PubMed ID: 26095235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joint analysis of tightly linked SNPs in screening step of genome-wide association studies leads to increased power.
    Becker T; Herold C
    Eur J Hum Genet; 2009 Aug; 17(8):1043-9. PubMed ID: 19223937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Exhaustive Scan Method for SNP Main Effects and SNP × SNP Interactions Over Highly Homozygous Genomes.
    Tsai SF; Tung CW; Tsai CA; Liao CT
    J Comput Biol; 2017 Dec; 24(12):1254-1264. PubMed ID: 29099245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability selection for genome-wide association.
    Alexander DH; Lange K
    Genet Epidemiol; 2011 Nov; 35(7):722-8. PubMed ID: 22009793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genotype imputation in case-only studies of gene-environment interaction: validity and power.
    Aleknonytė-Resch M; Szymczak S; Freitag-Wolf S; Dempfle A; Krawczak M
    Hum Genet; 2021 Aug; 140(8):1217-1228. PubMed ID: 34041609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects.
    Aschard H; Hancock DB; London SJ; Kraft P
    Hum Hered; 2010; 70(4):292-300. PubMed ID: 21293137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient genome-wide association test for multivariate phenotypes based on the Fisher combination function.
    Yang JJ; Li J; Williams LK; Buu A
    BMC Bioinformatics; 2016 Jan; 17():19. PubMed ID: 26729364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of untyped SNPs: maximum likelihood and imputation methods.
    Hu YJ; Lin DY
    Genet Epidemiol; 2010 Dec; 34(8):803-15. PubMed ID: 21104886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene-based testing of interactions in association studies of quantitative traits.
    Ma L; Clark AG; Keinan A
    PLoS Genet; 2013; 9(2):e1003321. PubMed ID: 23468652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Invited commentary: efficient testing of gene-environment interaction.
    Chatterjee N; Wacholder S
    Am J Epidemiol; 2009 Jan; 169(2):231-3; discussion 234-5. PubMed ID: 19022825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The case-only test for gene-environment interaction is not uniformly powerful: an empirical example.
    Wu C; Chang J; Ma B; Miao X; Zhou Y; Liu Y; Li Y; Wu T; Hu Z; Shen H; Jia W; Zeng Y; Lin D; Kraft P
    Genet Epidemiol; 2013 May; 37(4):402-7. PubMed ID: 23595356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Fast and Accurate Method for Genome-wide Scale Phenome-wide G × E Analysis and Its Application to UK Biobank.
    Bi W; Zhao Z; Dey R; Fritsche LG; Mukherjee B; Lee S
    Am J Hum Genet; 2019 Dec; 105(6):1182-1192. PubMed ID: 31735295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A robust model-free approach for rare variants association studies incorporating gene-gene and gene-environmental interactions.
    Fan R; Lo SH
    PLoS One; 2013; 8(12):e83057. PubMed ID: 24358248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.