These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 36571174)
1. Screening of natural phenazine producers for electroactivity in bioelectrochemical systems. Franco A; Elbahnasy M; Rosenbaum MA Microb Biotechnol; 2023 Mar; 16(3):579-594. PubMed ID: 36571174 [TBL] [Abstract][Full Text] [Related]
2. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa. Bosire EM; Blank LM; Rosenbaum MA Appl Environ Microbiol; 2016 Aug; 82(16):5026-38. PubMed ID: 27287325 [TBL] [Abstract][Full Text] [Related]
3. Exploring phenazine electron transfer interaction with elements of the respiratory pathways of Pseudomonas putida and Pseudomonas aeruginosa. Franco A; Chukwubuikem A; Meiners C; Rosenbaum MA Bioelectrochemistry; 2024 Jun; 157():108636. PubMed ID: 38181591 [TBL] [Abstract][Full Text] [Related]
4. Interdependency of Respiratory Metabolism and Phenazine-Associated Physiology in Pseudomonas aeruginosa PA14. Jo J; Price-Whelan A; Cornell WC; Dietrich LEP J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767778 [TBL] [Abstract][Full Text] [Related]
5. Role of phenazine-enzyme physiology for current generation in a bioelectrochemical system. Chukwubuikem A; Berger C; Mady A; Rosenbaum MA Microb Biotechnol; 2021 Jul; 14(4):1613-1626. PubMed ID: 34000093 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by Bosire EM; Rosenbaum MA Front Microbiol; 2017; 8():892. PubMed ID: 28572797 [No Abstract] [Full Text] [Related]
7. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA Front Microbiol; 2015; 6():284. PubMed ID: 25914687 [TBL] [Abstract][Full Text] [Related]
8. Boosting Heterologous Phenazine Production in Askitosari TD; Boto ST; Blank LM; Rosenbaum MA Front Microbiol; 2019; 10():1990. PubMed ID: 31555229 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic Degradation of Phenazines Can Generate Energy and Protect Sensitive Organisms from Toxicity. Costa KC; Bergkessel M; Saunders S; Korlach J; Newman DK mBio; 2015 Oct; 6(6):e01520-15. PubMed ID: 26507234 [TBL] [Abstract][Full Text] [Related]
10. Investigating the interaction between Shewanella oneidensis and phenazine 1-carboxylic acid in the microbial electrochemical processes. Yu YY; Zhang Y; Peng L Sci Total Environ; 2022 Sep; 838(Pt 3):156501. PubMed ID: 35667430 [TBL] [Abstract][Full Text] [Related]
11. The Pyruvate and α-Ketoglutarate Dehydrogenase Complexes of Glasser NR; Wang BX; Hoy JA; Newman DK J Biol Chem; 2017 Mar; 292(13):5593-5607. PubMed ID: 28174304 [TBL] [Abstract][Full Text] [Related]
12. Nitrate Reduction Stimulates and Is Stimulated by Phenazine-1-Carboxylic Acid Oxidation by Citrobacter portucalensis MBL. Tsypin LM; Newman DK mBio; 2021 Aug; 12(4):e0226521. PubMed ID: 34465028 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome c oxidase is one of the key enzymes providing the ability to produce phenazines in Pseudomonas chlororaphis subsp. aurantiaca. Verameyenka KG; Naumouskaya VA; Maximova NP World J Microbiol Biotechnol; 2023 Aug; 39(10):279. PubMed ID: 37583000 [TBL] [Abstract][Full Text] [Related]
14. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium fortuitum. Costa KC; Moskatel LS; Meirelles LA; Newman DK J Bacteriol; 2018 May; 200(10):. PubMed ID: 29483162 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance. Sporer AJ; Beierschmitt C; Bendebury A; Zink KE; Price-Whelan A; Buzzeo MC; Sanchez LM; Dietrich LEP Microbiology (Reading); 2018 May; 164(5):790-800. PubMed ID: 29629858 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788 [TBL] [Abstract][Full Text] [Related]
17. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838 [TBL] [Abstract][Full Text] [Related]
18. Genome analysis of Pseudomonas chlororaphis subsp. aurantiaca mutant strains with increased production of phenazines. Liaudanskaya AI; Vychik PV; Maximova NP; Verameyenka KG Arch Microbiol; 2022 Apr; 204(5):247. PubMed ID: 35397008 [TBL] [Abstract][Full Text] [Related]
19. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Pham TH; Boon N; De Maeyer K; Höfte M; Rabaey K; Verstraete W Appl Microbiol Biotechnol; 2008 Oct; 80(6):985-93. PubMed ID: 18688612 [TBL] [Abstract][Full Text] [Related]
20. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]