BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36571174)

  • 21. Filamentous marine Gram-positive Nocardiopsis dassonvillei biofilm as biocathode and its electron transfer mechanism.
    Moradi M; Gao Y; Narenkumar J; Fan Y; Gu T; Carmona-Martinez AA; Xu D; Wang F
    Sci Total Environ; 2024 Jan; 908():168347. PubMed ID: 37935264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms.
    Saunders SH; Tse ECM; Yates MD; Otero FJ; Trammell SA; Stemp EDA; Barton JK; Tender LM; Newman DK
    Cell; 2020 Aug; 182(4):919-932.e19. PubMed ID: 32763156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of Three Potato Pathogens by Phenazine-Producing
    Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M
    mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyocyanin and 1-Hydroxyphenazine Promote Anaerobic Killing of Pseudomonas aeruginosa via Single-Electron Transfer with Ferrous Iron.
    Kang J; Cho YH; Lee Y
    Microbiol Spectr; 2022 Dec; 10(6):e0231222. PubMed ID: 36321913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling the Production of
    Schmitz S; Rosenbaum MA
    ACS Chem Biol; 2020 Dec; 15(12):3244-3252. PubMed ID: 33258592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenazines and other redox-active antibiotics promote microbial mineral reduction.
    Hernandez ME; Kappler A; Newman DK
    Appl Environ Microbiol; 2004 Feb; 70(2):921-8. PubMed ID: 14766572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prevalence and Correlates of Phenazine Resistance in Culturable Bacteria from a Dryland Wheat Field.
    Perry EK; Newman DK
    Appl Environ Microbiol; 2022 Mar; 88(6):e0232021. PubMed ID: 35138927
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity and evolution of the phenazine biosynthesis pathway.
    Mavrodi DV; Peever TL; Mavrodi OV; Parejko JA; Raaijmakers JM; Lemanceau P; Mazurier S; Heide L; Blankenfeldt W; Weller DM; Thomashow LS
    Appl Environ Microbiol; 2010 Feb; 76(3):866-79. PubMed ID: 20008172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84.
    Maddula VS; Zhang Z; Pierson EA; Pierson LS
    Microb Ecol; 2006 Aug; 52(2):289-301. PubMed ID: 16897305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium.
    Morohoshi T; Yabe N; Yaguchi N; Xie X; Someya N
    J Biosci Bioeng; 2022 Jun; 133(6):541-546. PubMed ID: 35365429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupling an Electroactive
    Askitosari TD; Berger C; Tiso T; Harnisch F; Blank LM; Rosenbaum MA
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33322018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous quorum sensing mutation modulates electroactivity of Pseudomonas aeruginosa PA14.
    Berger C; Rosenbaum MA
    Bioelectrochemistry; 2017 Oct; 117():1-8. PubMed ID: 28494227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo.
    Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A
    Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in
    Yu JM; Wang D; Pierson LS; Pierson EA
    Plant Pathol J; 2018 Feb; 34(1):44-58. PubMed ID: 29422787
    [No Abstract]   [Full Text] [Related]  

  • 35. Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis.
    Thorwall S; Trivedi V; Ottum E; Wheeldon I
    Metab Eng; 2023 Jul; 78():223-234. PubMed ID: 37369325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Analysis of Phenazine Biosynthesis Genes in
    Hendry S; Steinke S; Wittstein K; Stadler M; Harmrolfs K; Adewunmi Y; Sahukhal G; Elasri M; Thomashow L; Weller D; Mavrodi O; Blankenfeldt W; Mavrodi D
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741619
    [No Abstract]   [Full Text] [Related]  

  • 37. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway.
    Feng J; Qian Y; Wang Z; Wang X; Xu S; Chen K; Ouyang P
    J Biotechnol; 2018 Jun; 275():1-6. PubMed ID: 29581032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales.
    Ramos I; Dietrich LE; Price-Whelan A; Newman DK
    Res Microbiol; 2010 Apr; 161(3):187-91. PubMed ID: 20123017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in
    Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X
    J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.