BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36571342)

  • 1. Regulation of enolase activation to promote neural protection and regeneration in spinal cord injury.
    McCoy HM; Polcyn R; Banik NL; Haque A
    Neural Regen Res; 2023 Jul; 18(7):1457-1462. PubMed ID: 36571342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection.
    Haque A; Polcyn R; Matzelle D; Banik NL
    Brain Sci; 2018 Feb; 8(2):. PubMed ID: 29463007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Enolase in Reducing Secondary Damage in Acute Spinal Cord Injury in Rats.
    Haque A; Capone M; Matzelle D; Cox A; Banik NL
    Neurochem Res; 2017 Oct; 42(10):2777-2787. PubMed ID: 28508172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enolase inhibition alters metabolic hormones and inflammatory factors to promote neuroprotection in spinal cord injury.
    Polcyn R; Capone M; Matzelle D; Hossain A; Chandran R; Banik NL; Haque A
    Neurochem Int; 2020 Oct; 139():104788. PubMed ID: 32650031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury.
    Haque A; Ray SK; Cox A; Banik NL
    Metab Brain Dis; 2016 Jun; 31(3):487-95. PubMed ID: 26847611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of enolase in the RANKL-mediated osteoclast activity following spinal cord injury.
    Shams R; Banik NL; Haque A
    Biocell; 2021 Sep; 45(6):1453-1457. PubMed ID: 34539043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocytic YAP Promotes the Formation of Glia Scars and Neural Regeneration after Spinal Cord Injury.
    Xie C; Shen X; Xu X; Liu H; Li F; Lu S; Gao Z; Zhang J; Wu Q; Yang D; Bao X; Zhang F; Wu S; Lv Z; Zhu M; Xu D; Wang P; Cao L; Wang W; Yuan Z; Wang Y; Li Z; Teng H; Huang Z
    J Neurosci; 2020 Mar; 40(13):2644-2662. PubMed ID: 32066583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats.
    Hu LY; Sun ZG; Wen YM; Cheng GZ; Wang SL; Zhao HB; Zhang XR
    Neuroscience; 2010 Sep; 169(3):1046-62. PubMed ID: 20678995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury.
    Dyck S; Kataria H; Alizadeh A; Santhosh KT; Lang B; Silver J; Karimi-Abdolrezaee S
    J Neuroinflammation; 2018 Mar; 15(1):90. PubMed ID: 29558941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. γ-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways.
    Hafner A; Obermajer N; Kos J
    Biochem J; 2012 Apr; 443(2):439-50. PubMed ID: 22257123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury.
    Xu Z; Wang BR; Wang X; Kuang F; Duan XL; Jiao XY; Ju G
    Life Sci; 2006 Oct; 79(20):1895-905. PubMed ID: 16978658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
    Lv B; Zhang X; Yuan J; Chen Y; Ding H; Cao X; Huang A
    Stem Cell Res Ther; 2021 Jan; 12(1):36. PubMed ID: 33413653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of cathepsin X reduces the strength of microglial-mediated neuroinflammation.
    Pišlar A; Božić B; Zidar N; Kos J
    Neuropharmacology; 2017 Mar; 114():88-100. PubMed ID: 27889490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical roles of sphingosine kinase 1 in the regulation of neuroinflammation and neuronal injury after spinal cord injury.
    Wang C; Xu T; Lachance BB; Zhong X; Shen G; Xu T; Tang C; Jia X
    J Neuroinflammation; 2021 Feb; 18(1):50. PubMed ID: 33602274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signaling pathway after spinal cord injury.
    Gao K; Shen Z; Yuan Y; Han D; Song C; Guo Y; Mei X
    J Neurochem; 2016 Jul; 138(1):139-49. PubMed ID: 26443048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Rho-associated coiled-coil containing protein kinase in the spinal cord injury induced neuropathic pain.
    Kishima K; Tachibana T; Yamanaka H; Kobayashi K; Okubo M; Maruo K; Noguchi K
    Spine J; 2021 Feb; 21(2):343-351. PubMed ID: 32853793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SARM1 promotes neuroinflammation and inhibits neural regeneration after spinal cord injury through NF-κB signaling.
    Liu H; Zhang J; Xu X; Lu S; Yang D; Xie C; Jia M; Zhang W; Jin L; Wang X; Shen X; Li F; Wang W; Bao X; Li S; Zhu M; Wang W; Wang Y; Huang Z; Teng H
    Theranostics; 2021; 11(9):4187-4206. PubMed ID: 33754056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats.
    Gwak YS; Kang J; Unabia GC; Hulsebosch CE
    Exp Neurol; 2012 Apr; 234(2):362-72. PubMed ID: 22036747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of leucine-rich repeats and calponin homology domain containing 1 accelerates microglia-mediated neuroinflammation in a rat traumatic spinal cord injury model.
    Chen WK; Feng LJ; Liu QD; Ke QF; Cai PY; Zhang PR; Cai LQ; Huang NL; Lin WP
    J Neuroinflammation; 2020 Jul; 17(1):202. PubMed ID: 32631435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation.
    Wang C; Wang Q; Lou Y; Xu J; Feng Z; Chen Y; Tang Q; Zheng G; Zhang Z; Wu Y; Tian N; Zhou Y; Xu H; Zhang X
    J Cell Mol Med; 2018 Feb; 22(2):1148-1166. PubMed ID: 29148269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.