These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36571342)
81. Selective killing of spinal cord neural stem cells impairs locomotor recovery in a mouse model of spinal cord injury. Cusimano M; Brambilla E; Capotondo A; De Feo D; Tomasso A; Comi G; D'Adamo P; Muzio L; Martino G J Neuroinflammation; 2018 Feb; 15(1):58. PubMed ID: 29475438 [TBL] [Abstract][Full Text] [Related]
82. Cotransplantation with RADA16-PRG-Self-Assembled Nanopeptide Scaffolds, Bone Mesenchymal Stem Cells and Brain-Derived Neurotrophic Factor-Adeno-Associated Virus Promote Functional Repair After Acute Spinal Cord Injury in Rats. Luo H; Chen X; Zhuang P; Wu S; Wei J; Xu W J Biomed Nanotechnol; 2022 Jan; 18(1):225-233. PubMed ID: 35180916 [TBL] [Abstract][Full Text] [Related]
83. Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates. Poulen G; Aloy E; Bringuier CM; Mestre-Francés N; Artus EVF; Cardoso M; Perez JC; Goze-Bac C; Boukhaddaoui H; Lonjon N; Gerber YN; Perrin FE Theranostics; 2021; 11(18):8640-8659. PubMed ID: 34522204 [TBL] [Abstract][Full Text] [Related]
84. Ablation of the transcription factors E2F1-2 limits neuroinflammation and associated neurological deficits after contusive spinal cord injury. Wu J; Sabirzhanov B; Stoica BA; Lipinski MM; Zhao Z; Zhao S; Ward N; Yang D; Faden AI Cell Cycle; 2015; 14(23):3698-712. PubMed ID: 26505089 [TBL] [Abstract][Full Text] [Related]
85. Targeting miR-106-3p facilitates functional recovery via inactivating inflammatory microglia and interfering glial scar component deposition after neural injury. Yang YH; Zhu J Eur Rev Med Pharmacol Sci; 2019 Oct; 23(20):9000-9008. PubMed ID: 31696488 [TBL] [Abstract][Full Text] [Related]
86. Phosphatidylinositol 3-kinase/protein kinase Cdelta activation induces close homolog of adhesion molecule L1 (CHL1) expression in cultured astrocytes. Wu J; Wrathall JR; Schachner M Glia; 2010 Feb; 58(3):315-28. PubMed ID: 19672967 [TBL] [Abstract][Full Text] [Related]
87. Anti-apoptotic signal transduction mechanism of electroacupuncture in acute spinal cord injury. Renfu Q; Rongliang C; Mengxuan D; Liang Z; Jinwei X; Zongbao Y; Disheng Y Acupunct Med; 2014 Dec; 32(6):463-71. PubMed ID: 25187499 [TBL] [Abstract][Full Text] [Related]
88. Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury. Huang T; Shen J; Bao B; Hu W; Sun Y; Zhu T; Lin J; Gao T; Li X; Zheng X Brain Res; 2022 Jul; 1786():147902. PubMed ID: 35381215 [TBL] [Abstract][Full Text] [Related]
89. Early mobilization in spinal cord injury promotes changes in microglial dynamics and recovery of motor function. Asano K; Nakamura T; Funakoshi K IBRO Neurosci Rep; 2022 Jun; 12():366-376. PubMed ID: 35586775 [TBL] [Abstract][Full Text] [Related]
90. Local Delivery of β-Elemene Improves Locomotor Functional Recovery by Alleviating Endoplasmic Reticulum Stress and Reducing Neuronal Apoptosis in Rats with Spinal Cord Injury. Wang J; Li H; Ren Y; Yao Y; Hu J; Zheng M; Ding Y; Chen YY; Shen Y; Wang LL; Zhu Y Cell Physiol Biochem; 2018; 49(2):595-609. PubMed ID: 30165357 [TBL] [Abstract][Full Text] [Related]
91. The study of traditional Chinese medical elongated-needle therapy promoting neurological recovery mechanism after spinal cord injury in rats. Shi Y; Quan R; Li C; Zhang L; Du M; Xu J; Yang Z; Yang D J Ethnopharmacol; 2016 Jul; 187():28-41. PubMed ID: 27085942 [TBL] [Abstract][Full Text] [Related]
92. Melatonin Enhances Autophagy and Reduces Apoptosis to Promote Locomotor Recovery in Spinal Cord Injury via the PI3K/AKT/mTOR Signaling Pathway. Li Y; Guo Y; Fan Y; Tian H; Li K; Mei X Neurochem Res; 2019 Aug; 44(8):2007-2019. PubMed ID: 31325156 [TBL] [Abstract][Full Text] [Related]
93. Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Tian DS; Xie MJ; Yu ZY; Zhang Q; Wang YH; Chen B; Chen C; Wang W Brain Res; 2007 Mar; 1135(1):177-85. PubMed ID: 17188663 [TBL] [Abstract][Full Text] [Related]
94. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. Ghasemlou N; Lopez-Vales R; Lachance C; Thuraisingam T; Gaestel M; Radzioch D; David S J Neurosci; 2010 Oct; 30(41):13750-9. PubMed ID: 20943915 [TBL] [Abstract][Full Text] [Related]
95. Tofacitinib Promotes Functional Recovery after Spinal Cord Injury by Regulating Microglial Polarization via JAK/STAT Signaling Pathway. Ma H; Wang C; Han L; Kong F; Liu Z; Zhang B; Chu W; Wang H; Wang L; Li Q; Peng W; Yang H; Han C; Lu X Int J Biol Sci; 2023; 19(15):4865-4882. PubMed ID: 37781508 [No Abstract] [Full Text] [Related]
96. Multifunctional roles of γ-enolase in the central nervous system: more than a neuronal marker. Horvat S; Kos J; Pišlar A Cell Biosci; 2024 May; 14(1):61. PubMed ID: 38735971 [TBL] [Abstract][Full Text] [Related]
97. Modulating neuroinflammation through molecular, cellular and biomaterial-based approaches to treat spinal cord injury. Lee CY; Chooi WH; Ng SY; Chew SY Bioeng Transl Med; 2023 Mar; 8(2):e10389. PubMed ID: 36925680 [TBL] [Abstract][Full Text] [Related]
98. Complement-dependent neuroinflammation in spinal cord injury: from pathology to therapeutic implications. Saad H; El Baba B; Tfaily A; Kobeissy F; Gonzalez JG; Refai D; Rodts GR; Mustroph C; Gimbel D; Grossberg J; Barrow DL; Gary MF; Alawieh AM Neural Regen Res; 2025 May; 20(5):1324-1335. PubMed ID: 38845224 [TBL] [Abstract][Full Text] [Related]
99. Neuron specific enolase is a potential target for regulating neuronal cell survival and death: implications in neurodegeneration and regeneration. Polcyn R; Capone M; Hossain A; Matzelle D; Banik NL; Haque A Neuroimmunol Neuroinflamm; 2017; 4():254-257. PubMed ID: 29423430 [No Abstract] [Full Text] [Related]
100. Unleashing Spinal Cord Repair: The Role of cAMP-Specific PDE Inhibition in Attenuating Neuroinflammation and Boosting Regeneration after Traumatic Spinal Cord Injury. Mussen F; Broeckhoven JV; Hellings N; Schepers M; Vanmierlo T Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37175842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]