These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Aqueous Two-Phase Emulsion Bioresin for Facile One-Step 3D Microgel-Based Bioprinting. Wang Q; Karadas Ö; Backman O; Wang L; Näreoja T; Rosenholm JM; Xu C; Wang X Adv Healthc Mater; 2023 Jul; 12(19):e2203243. PubMed ID: 36929700 [TBL] [Abstract][Full Text] [Related]
7. Ionically annealed zwitterionic microgels for bioprinting of cartilaginous constructs. Surman F; Asadikorayem M; Weber P; Weber D; Zenobi-Wong M Biofabrication; 2024 Jan; 16(2):. PubMed ID: 38176081 [TBL] [Abstract][Full Text] [Related]
8. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
9. In situ 3D bioprinting with bioconcrete bioink. Xie M; Shi Y; Zhang C; Ge M; Zhang J; Chen Z; Fu J; Xie Z; He Y Nat Commun; 2022 Jun; 13(1):3597. PubMed ID: 35739106 [TBL] [Abstract][Full Text] [Related]
10. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010 [TBL] [Abstract][Full Text] [Related]
11. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
12. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
13. High-throughput microgel biofabrication via air-assisted co-axial jetting for cell encapsulation, 3D bioprinting, and scaffolding applications. Pal V; Singh YP; Gupta D; Alioglu MA; Nagamine M; Kim MH; Ozbolat IT Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36927673 [TBL] [Abstract][Full Text] [Related]
14. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
18. Sonochemical Degradation of Gelatin Methacryloyl to Control Viscoelasticity for Inkjet Bioprinting. Lee Y; Park JA; Tuladhar T; Jung S Macromol Biosci; 2023 May; 23(5):e2200509. PubMed ID: 36896820 [TBL] [Abstract][Full Text] [Related]
19. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
20. Multi-network granular hydrogel with enhanced strength for 3D bioprinting. Wang W; Chen X; Meng T; Liu L J Biomater Appl; 2022 May; 36(10):1852-1862. PubMed ID: 35225041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]