BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36571681)

  • 21. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.
    Rentería-Villalobos M; Vioque I; Mantero J; Manjón G
    J Hazard Mater; 2010 Sep; 181(1-3):193-203. PubMed ID: 20537794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new basic burning raw material for simultaneous stabilization/solidification of PO
    Bing L; Jiancheng S; Mengjun C; Xiangfei Z; Renlong L; Yong Y
    Ecotoxicol Environ Saf; 2023 Mar; 252():114582. PubMed ID: 36731180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.
    Cañete SJ; Palad LJ; Enriquez EB; Garcia TY; Yulo-Nazarea T
    Environ Monit Assess; 2008 Jul; 142(1-3):337-44. PubMed ID: 17874311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry.
    Lütke SF; Oliveira MLS; Silva LFO; Cadaval TRS; Dotto GL
    Chemosphere; 2020 Oct; 256():127138. PubMed ID: 32450348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure.
    Silva LF; Hower JC; Izquierdo M; Querol X
    Sci Total Environ; 2010 Oct; 408(21):5117-22. PubMed ID: 20701953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential uses of phosphogypsum: A review.
    Pliaka M; Gaidajis G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(9):746-763. PubMed ID: 35903962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum.
    Zhang Y; Dai S; Weng W; Huang J; Su Y; Cai Y
    J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e62-e68. PubMed ID: 28657108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental assessment of phosphogypsum: A comprehensive geochemical modeling and leaching behavior study.
    Akfas F; Elghali A; Toubri Y; Samrane K; Munoz M; Bodinier JL; Benzaazoua M
    J Environ Manage; 2024 May; 359():120929. PubMed ID: 38669878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphogypsum chemistry under highly anoxic conditions.
    Carbonell-Barrachina A; DeLaune RD; Jugsujinda A
    Waste Manag; 2002; 22(6):657-65. PubMed ID: 12214977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of organic substrates to enhance the sulfate-reducing activity in phosphogypsum.
    Castillo J; Pérez-López R; Sarmiento AM; Nieto JM
    Sci Total Environ; 2012 Nov; 439():106-13. PubMed ID: 23063915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of Zinc-bearing sulphate phases formed during the synthesis of phosphoric acid and Zinc removal by the ligands of
    Eid R; Maatouk E; Samrani AE; Azzi V; Bassil J
    Environ Technol; 2022 Nov; 43(26):4125-4136. PubMed ID: 34125654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical behavior of fluorine and phosphorus in chemical looping gasification using phosphogypsum as an oxygen carrier.
    Yang J; Ma L; Liu H; Guo Z; Dai Q; Zhang W; Bounkhong K
    Chemosphere; 2020 Jun; 248():125979. PubMed ID: 32028158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristic pollutant purification analysis of modified phosphogypsum comprehensive utilization.
    Wang CQ; Xiong DM; Chen Y; Wu K; Tu MJ; Wang PX; Zhang ZJ; Zhou L
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):67456-67465. PubMed ID: 36048392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO₂ sequestration.
    Contreras M; Pérez-López R; Gázquez MJ; Morales-Flórez V; Santos A; Esquivias L; Bolívar JP
    Waste Manag; 2015 Nov; 45():412-9. PubMed ID: 26209345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities.
    Nayak S; Mishra CS; Guru BC; Rath M
    J Environ Biol; 2011 Sep; 32(5):613-7. PubMed ID: 22319877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An effective treatment method for phosphogypsum.
    Liu DS; Wang CQ; Mei XD; Zhang C
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30533-30539. PubMed ID: 31493074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles.
    Al Attar L; Al-Oudat M; Shamali K; Abdul Ghany B; Kanakri S
    Environ Technol; 2012; 33(1-3):143-52. PubMed ID: 22519097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of leaching tests on phosphogypsum by infiltration-percolation.
    Hassoune H; Lahhit M; Khalid A; Lachehab A
    Water Sci Technol; 2017 Oct; 76(7-8):1844-1851. PubMed ID: 28991799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Treatment of phosphogypsum waste produced from phosphate ore processing.
    El-Didamony H; Gado HS; Awwad NS; Fawzy MM; Attallah MF
    J Hazard Mater; 2013 Jan; 244-245():596-602. PubMed ID: 23195600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular speciation of phosphorus in phosphogypsum waste by solid-state nuclear magnetic resonance spectroscopy.
    Jiang Y; Kwon KD; Wang S; Ren C; Li W
    Sci Total Environ; 2019 Dec; 696():133958. PubMed ID: 31442717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.