BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36571694)

  • 1. Iodine supplementation through its biofortification in Brassica species depending on the type of soil.
    Faridullah F; Shabbir H; Iqbal A; Bacha AU; Arifeen A; Bhatti ZA; Mujtaba G
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37208-37218. PubMed ID: 36571694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agronomic iodine biofortification of leafy vegetables grown in Vertisols, Oxisols and Alfisols.
    Ligowe IS; Bailey EH; Young SD; Ander EL; Kabambe V; Chilimba AD; Lark RM; Nalivata PC
    Environ Geochem Health; 2021 Jan; 43(1):361-374. PubMed ID: 32965604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodine Biofortification of Four
    Gonnella M; Renna M; D'Imperio M; Santamaria P; Serio F
    Nutrients; 2019 Feb; 11(2):. PubMed ID: 30795581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables.
    Lawson PG; Daum D; Czauderna R; Meuser H; Härtling JW
    Front Plant Sci; 2015; 6():450. PubMed ID: 26157445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays.
    Selvam A; Wong JW
    J Hazard Mater; 2009 Aug; 167(1-3):170-8. PubMed ID: 19185420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil.
    Dhaliwal SS; Sharma V; Taneja PK; Shukla AK; Kaur L; Verma G; Verma V; Singh J
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):6000-6009. PubMed ID: 34431059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere.
    Qiao D; Lu H; Zhang X
    Environ Pollut; 2020 Dec; 267():115452. PubMed ID: 32871485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers.
    Rossi L; Zhang W; Ma X
    Environ Pollut; 2017 Oct; 229():132-138. PubMed ID: 28582676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogeochemical transfer and dynamics of iodine in a soil-plant system.
    Weng HX; Yan AL; Hong CL; Qin YC; Pan L; Xie LL
    Environ Geochem Health; 2009 Jun; 31(3):401-11. PubMed ID: 18563587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-element uptake and growth responses of Rice (Oryza sativa L.) to TiO
    Arshad M; Nisar S; Gul I; Nawaz U; Irum S; Ahmad S; Sadat H; Mian IA; Ali S; Rizwan M; Alsahli AA; Alyemeni MN
    Ecotoxicol Environ Saf; 2021 Jun; 215():112149. PubMed ID: 33773153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of iron-lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater.
    Zaheer IE; Ali S; Saleem MH; Imran M; Alnusairi GSH; Alharbi BM; Riaz M; Abbas Z; Rizwan M; Soliman MH
    Plant Physiol Biochem; 2020 Oct; 155():70-84. PubMed ID: 32745932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M; Imanifard A
    Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of iodide and iodate for adsorption-desorption characteristics and bioavailability in three types of soil.
    Hong C; Weng H; Jilani G; Yan A; Liu H; Xue Z
    Biol Trace Elem Res; 2012 May; 146(2):262-71. PubMed ID: 22038267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofortification of Potato and Carrot With Iodine by Applying Different Soils and Irrigation With Iodine-Containing Water.
    Dobosy P; Endrédi A; Sandil S; Vetési V; Rékási M; Takács T; Záray G
    Front Plant Sci; 2020; 11():593047. PubMed ID: 33362822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil.
    Dai JL; Zhu YG; Zhang M; Huang YZ
    Biol Trace Elem Res; 2004 Dec; 101(3):265-76. PubMed ID: 15564656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water-soluble chitosan and phytoremediation efficiency of two
    Bian JL; Cao W; Guo JM; Yang JX; Wang XD; Wang J; Huang J; Xia TX; Xia CY
    Int J Phytoremediation; 2022; 24(14):1557-1566. PubMed ID: 35297705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of selenium bioavailability to
    Zhang Z; Shen F; Gu M; Liu Y; Pan L; Shohag MJI; Li T; Wei Y
    Int J Phytoremediation; 2020; 22(9):952-962. PubMed ID: 32529839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils.
    Grispen VM; Nelissen HJ; Verkleij JA
    Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome sequencing of Brassica napus highlights the complex issues with soil supplementation with sewage sludge.
    Jaskulak M; Rostami S; Zorena K; Vandenbulcke F
    Chemosphere; 2022 Jul; 298():134321. PubMed ID: 35306057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.