These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36571949)
1. Modular desalination concept with low-pressure reverse osmosis and capacitive deionization: Performance study of a pilot plant in Vietnam in comparison to seawater reverse osmosis. Luong VT; Cañas Kurz EE; Hellriegel U; Dinh DN; Tran HT; Figoli A; Gabriele B; Luu TL; Hoinkis J J Environ Manage; 2023 Mar; 329():117078. PubMed ID: 36571949 [TBL] [Abstract][Full Text] [Related]
2. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery. Valladares Linares R; Li Z; Yangali-Quintanilla V; Ghaffour N; Amy G; Leiknes T; Vrouwenvelder JS Water Res; 2016 Jan; 88():225-234. PubMed ID: 26512800 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Pilot-Scale Capacitive Deionization (MCDI) and Low-Pressure Reverse Osmosis (LPRO) for PV-Powered Brackish Water Desalination in Morocco for Irrigation of Argan Trees. Cañas Kurz EE; Hellriegel U; Hdoufane A; Benaceur I; Anane M; Jaiti F; El-Abbassi A; Hoinkis J Membranes (Basel); 2023 Jul; 13(7):. PubMed ID: 37505034 [TBL] [Abstract][Full Text] [Related]
4. Partial Desalination of Saline Groundwater: Comparison of Nanofiltration, Reverse Osmosis and Membrane Capacitive Deionisation. Rosentreter H; Walther M; Lerch A Membranes (Basel); 2021 Feb; 11(2):. PubMed ID: 33673190 [TBL] [Abstract][Full Text] [Related]
5. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. Zhu Y; Miller C; Lian B; Wang Y; Fletcher J; Zhou H; He Z; Lyu S; Purser M; Juracich P; Sweeney D; Waite TD Water Res; 2024 May; 254():121413. PubMed ID: 38489850 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination. Park K; Kim DY; Jang YH; Kim MG; Yang DR; Hong S Water Res; 2020 Mar; 171():115426. PubMed ID: 31887548 [TBL] [Abstract][Full Text] [Related]
7. Energetic Comparison of Flow-Electrode Capacitive Deionization and Membrane Technology: Assessment on Applicability in Desalination Fields. Lim J; Lee S; Lee H; Hong S Environ Sci Technol; 2024 Apr; 58(14):6181-6191. PubMed ID: 38536729 [TBL] [Abstract][Full Text] [Related]
8. Towards sustainable circular brine reclamation using seawater reverse osmosis, membrane distillation and forward osmosis hybrids: An experimental investigation. Son HS; Soukane S; Lee J; Kim Y; Kim YD; Ghaffour N J Environ Manage; 2021 Sep; 293():112836. PubMed ID: 34052611 [TBL] [Abstract][Full Text] [Related]
9. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis. Chen X; Yip NY Environ Sci Technol; 2018 Feb; 52(4):2242-2250. PubMed ID: 29357240 [TBL] [Abstract][Full Text] [Related]
10. Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type. Kumar M; Adham SS; Pearce WR Environ Sci Technol; 2006 Mar; 40(6):2037-44. PubMed ID: 16570633 [TBL] [Abstract][Full Text] [Related]
11. Reducing the specific energy consumption of 1st-pass SWRO by application of high-flux membranes fed with high-pH, decarbonated seawater. Ophek L; Birnhack L; Nir O; Binshtein E; Lahav O Water Res; 2015 Nov; 85():185-92. PubMed ID: 26318651 [TBL] [Abstract][Full Text] [Related]
12. Opportunities of Reducing the Energy Consumption of Seawater Reverse Osmosis Desalination by Exploiting Salinity Gradients. Aumesquet-Carreto MÁ; Ortega-Delgado B; García-Rodríguez L Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363601 [TBL] [Abstract][Full Text] [Related]
13. Design and Implementation of an Electrical Characterization System for Membrane Capacitive Deionization Units for the Water Treatment. Leon FA; Ramos-Martin A; Santana D Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677539 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Ceramics Adsorption Filter as a Pretreatment for Seawater Reverse-Osmosis Desalination. Wang J; Sim LN; Ho JS; Nakano K; Kinoshita Y; Sekiguchi K; Chong TH Membranes (Basel); 2022 Nov; 12(12):. PubMed ID: 36557116 [TBL] [Abstract][Full Text] [Related]
15. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Hancock NT; Black ND; Cath TY Water Res; 2012 Mar; 46(4):1145-54. PubMed ID: 22209275 [TBL] [Abstract][Full Text] [Related]
16. Desalination Technology in South Korea: A Comprehensive Review of Technology Trends and Future Outlook. Park J; Lee S Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207124 [TBL] [Abstract][Full Text] [Related]
17. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes? Khan MT; Busch M; Molina VG; Emwas AH; Aubry C; Croue JP Water Res; 2014 Aug; 59():271-82. PubMed ID: 24810743 [TBL] [Abstract][Full Text] [Related]
18. Impacts of sewage outbursts on seawater reverse osmosis desalination. Bar-Zeev E; Belkin N; Speter A; Reich T; Geisler E; Rahav E Water Res; 2021 Oct; 204():117631. PubMed ID: 34536688 [TBL] [Abstract][Full Text] [Related]
19. Jellyfish swarm impair the pretreatment efficiency and membrane performance of seawater reverse osmosis desalination. Rahav E; Belkin N; Nnebuo O; Sisma-Ventura G; Guy-Haim T; Sharon-Gojman R; Geisler E; Bar-Zeev E Water Res; 2022 May; 215():118231. PubMed ID: 35247603 [TBL] [Abstract][Full Text] [Related]