These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 3657195)
1. From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system. Decroly O; Goldbeter A J Theor Biol; 1987 Jan; 124(2):219-50. PubMed ID: 3657195 [TBL] [Abstract][Full Text] [Related]
2. Temporal self-organization in biochemical systems: periodic behavior vs. chaos. Goldbeter A; Decroly O Am J Physiol; 1983 Oct; 245(4):R478-83. PubMed ID: 6312816 [TBL] [Abstract][Full Text] [Related]
3. Selection between multiple periodic regimes in a biochemical system: complex dynamic behaviour resolved by use of one-dimensional maps. Decroly O; Goldbeter A J Theor Biol; 1985 Apr; 113(4):649-71. PubMed ID: 4033147 [TBL] [Abstract][Full Text] [Related]
4. Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Decroly O; Goldbeter A Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6917-21. PubMed ID: 6960354 [TBL] [Abstract][Full Text] [Related]
5. Origin of bursting oscillations in an enzyme model reaction system. Straube R; Flockerzi D; Müller SC; Hauser MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066205. PubMed ID: 16486038 [TBL] [Abstract][Full Text] [Related]
6. Coexistence of multiple periodic and chaotic regimes in biochemical oscillations with phase shifts. de la Fuente IM; Martinez L; Aguirregabiria JM; Veguillas J Acta Biotheor; 1998 Mar; 46(1):37-51. PubMed ID: 9558751 [TBL] [Abstract][Full Text] [Related]
7. Generation of periodic and chaotic bursting in an excitable cell model. Fan YS; Chay TR Biol Cybern; 1994; 71(5):417-31. PubMed ID: 7993930 [TBL] [Abstract][Full Text] [Related]
8. Birhythmicity, trirhythmicity and chaos in bursting calcium oscillations. Haberichter T; Marhl M; Heinrich R Biophys Chem; 2001 Mar; 90(1):17-30. PubMed ID: 11321672 [TBL] [Abstract][Full Text] [Related]
9. From simple to complex oscillatory behavior in metabolic and genetic control networks. Goldbeter A; Gonze D; Houart G; Leloup JC; Halloy J; Dupont G Chaos; 2001 Mar; 11(1):247-260. PubMed ID: 12779458 [TBL] [Abstract][Full Text] [Related]
10. Inverse period-doubling bifurcations determine complex structure of bursting in a one-dimensional non-autonomous map. Han X; Chen Z; Bi Q Chaos; 2016 Feb; 26(2):023117. PubMed ID: 26931598 [TBL] [Abstract][Full Text] [Related]
11. Local and global limit cycles in biochemical systems. Hyver C J Theor Biol; 1984 Mar; 107(2):203-9. PubMed ID: 6717038 [TBL] [Abstract][Full Text] [Related]
12. The effect of slow allosteric transitions in a coupled biochemical oscillator model. Kaern M; Hunding A J Theor Biol; 1999 May; 198(2):269-81. PubMed ID: 10339398 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical bursting oscillations on a high-dimensional slow subsystem. Kiss IZ; Lv Q; Organ L; Hudson JL Phys Chem Chem Phys; 2006 Jun; 8(23):2707-15. PubMed ID: 16763702 [TBL] [Abstract][Full Text] [Related]
15. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. Innocenti G; Morelli A; Genesio R; Torcini A Chaos; 2007 Dec; 17(4):043128. PubMed ID: 18163792 [TBL] [Abstract][Full Text] [Related]
16. Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker. Gu H Chaos; 2013 Jun; 23(2):023126. PubMed ID: 23822491 [TBL] [Abstract][Full Text] [Related]
17. Finding complex oscillatory phenomena in biochemical systems. An empirical approach. Goldbeter A; Decroly O; Li Y; Martiel JL; Moran F Biophys Chem; 1988 Feb; 29(1-2):211-7. PubMed ID: 2833948 [TBL] [Abstract][Full Text] [Related]
18. Capturing the bursting dynamics of a two-cell inhibitory network using a one-dimensional map. Matveev V; Bose A; Nadim F J Comput Neurosci; 2007 Oct; 23(2):169-87. PubMed ID: 17440801 [TBL] [Abstract][Full Text] [Related]
19. Order parameter for bursting polyrhythms in multifunctional central pattern generators. Wojcik J; Clewley R; Shilnikov A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056209. PubMed ID: 21728632 [TBL] [Abstract][Full Text] [Related]
20. Bifurcations and chaos in a predator-prey system with the Allee effect. Morozov A; Petrovskii S; Li BL Proc Biol Sci; 2004 Jul; 271(1546):1407-14. PubMed ID: 15306340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]