These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 3657220)

  • 1. Discrete systems, cell-cell interactions and color pattern of animals. I. Conflicting dynamics and pattern formation.
    Cocho G; Pérez-Pascual R; Rius JL
    J Theor Biol; 1987 Apr; 125(4):419-35. PubMed ID: 3657220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrete systems, cell-cell interactions and color pattern of animals. II. Clonal theory and cellular automata.
    Cocho G; Pérez-Pascual R; Rius JL; Soto F
    J Theor Biol; 1987 Apr; 125(4):437-47. PubMed ID: 3657221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A living mesoscopic cellular automaton made of skin scales.
    Manukyan L; Montandon SA; Fofonjka A; Smirnov S; Milinkovitch MC
    Nature; 2017 Apr; 544(7649):173-179. PubMed ID: 28406206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Unreasonable Effectiveness of Reaction Diffusion in Vertebrate Skin Color Patterning.
    Milinkovitch MC; Jahanbakhsh E; Zakany S
    Annu Rev Cell Dev Biol; 2023 Oct; 39():145-174. PubMed ID: 37843926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes.
    Di-Poï N; Milinkovitch MC
    Sci Adv; 2016 Jun; 2(6):e1600708. PubMed ID: 28439533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. COLOR-PATTERN VARIATION IN LAKE ERIE WATER SNAKES: PREDICTION AND MEASUREMENT OF NATURAL SELECTION.
    King RB
    Evolution; 1993 Dec; 47(6):1819-1833. PubMed ID: 28567998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact response of cells can mediate morphogenetic pattern formation.
    Edelstein-Keshet L; Ermentrout GB
    Differentiation; 1990 Dec; 45(3):147-59. PubMed ID: 2090517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata).
    Handrigan GR; Richman JM
    Dev Biol; 2010 Jan; 337(1):171-86. PubMed ID: 19850027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology, development, and evolution of fetal membranes and placentation in squamate reptiles.
    Blackburn DG; Flemming AF
    J Exp Zool B Mol Dev Evol; 2009 Sep; 312(6):579-89. PubMed ID: 18683170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of adrenocortical hormones by adrenal glands of lizards and snakes.
    PHILLIPS JG; JONES IC; BELLAMY D
    J Endocrinol; 1962 Oct; 25():233-7. PubMed ID: 13943150
    [No Abstract]   [Full Text] [Related]  

  • 11. Reptiles and their importance in the epidemiology of leishmaniasis.
    Belova EM
    Bull World Health Organ; 1971; 44(4):553-60. PubMed ID: 5316256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early evolution of the venom system in lizards and snakes.
    Fry BG; Vidal N; Norman JA; Vonk FJ; Scheib H; Ramjan SF; Kuruppu S; Fung K; Hedges SB; Richardson MK; Hodgson WC; Ignjatovic V; Summerhayes R; Kochva E
    Nature; 2006 Feb; 439(7076):584-8. PubMed ID: 16292255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidermal differentiation in embryos of the tuatara Sphenodon punctatus (Reptilia, Sphenodontidae) in comparison with the epidermis of other reptiles.
    Alibardi L; Gill BJ
    J Anat; 2007 Jul; 211(1):92-103. PubMed ID: 17532799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification rates are more strongly related to microhabitat than climate in squamate reptiles (lizards and snakes).
    Bars-Closel M; Kohlsdorf T; Moen DS; Wiens JJ
    Evolution; 2017 Sep; 71(9):2243-2261. PubMed ID: 28815567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroevolutionary diversification of glands for chemical communication in squamate reptiles.
    García-Roa R; Jara M; Baeckens S; López P; Van Damme R; Martín J; Pincheira-Donoso D
    Sci Rep; 2017 Aug; 7(1):9288. PubMed ID: 28839252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QUANTITATIVE RESPONSE TO COLOR SHIFT IN DIURNAL LIZARDS.
    FORBES A; FOX S; MCCARTHY E; YAMASTHITA E
    Proc Natl Acad Sci U S A; 1964 Sep; 52(3):667-72. PubMed ID: 14212541
    [No Abstract]   [Full Text] [Related]  

  • 17. [Enterobacteria of reptiles (author's transl)].
    Roggendorf M; Müller HE
    Zentralbl Bakteriol Orig A; 1976 Oct; 236(1):22-35. PubMed ID: 998035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histochemical studies on the mucins of the vertebrate tongues. V. Comparative mucopolysaccharide histochemistry of the mast cells in the tongues of twenty vertebrates.
    Nalavade MN; Varute AT
    Acta Histochem; 1973; 47(1):70-82. PubMed ID: 4135088
    [No Abstract]   [Full Text] [Related]  

  • 19. Visual acuity and signal color pattern in an
    Fleishman LJ; Yeo AI; Perez CW
    J Exp Biol; 2017 Jun; 220(Pt 12):2154-2158. PubMed ID: 28385798
    [No Abstract]   [Full Text] [Related]  

  • 20. Genetics and evolution of colour patterns in reptiles.
    Olsson M; Stuart-Fox D; Ballen C
    Semin Cell Dev Biol; 2013; 24(6-7):529-41. PubMed ID: 23578866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.