These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36572319)
1. Accumulation, translocation, and transformation of two CdSe/ZnS quantum dots in rice and pumpkin plants. Kong W; Hou X; Wei L; Chen W; Liu J; Schnoor JL; Jiang G Sci Total Environ; 2023 Mar; 864():161156. PubMed ID: 36572319 [TBL] [Abstract][Full Text] [Related]
2. Rice Seedlings and Microorganisms Mediate Biotransformation of Se in CdSe/ZnS Quantum Dots to Volatile Alkyl Selenides. Wei L; Liu J; Hou X; Chen W; Feng Y; Kong W; Tang Y; Zhong C; Zhang S; Wang T; Zhao G; Jiao S; Jiang G Environ Sci Technol; 2023 Dec; 57(48):20261-20271. PubMed ID: 37992251 [TBL] [Abstract][Full Text] [Related]
3. Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity. Duong HD; Yang S; Seo YW; Rhee JI J Nanosci Nanotechnol; 2018 Mar; 18(3):1568-1576. PubMed ID: 29448631 [TBL] [Abstract][Full Text] [Related]
4. The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions. Hu L; Zhong H; He Z Ecotoxicol Environ Saf; 2019 Oct; 181():336-344. PubMed ID: 31202934 [TBL] [Abstract][Full Text] [Related]
5. Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells. Peng L; He M; Chen B; Wu Q; Zhang Z; Pang D; Zhu Y; Hu B Biomaterials; 2013 Dec; 34(37):9545-58. PubMed ID: 24011712 [TBL] [Abstract][Full Text] [Related]
6. Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots. Navarro DA; Banerjee S; Watson DF; Aga DS Environ Sci Technol; 2011 Aug; 45(15):6343-9. PubMed ID: 21692543 [TBL] [Abstract][Full Text] [Related]
8. The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: adhesion of quantum dots to the cell surface and the protection effect of ZnS shell. Mei J; Yang LY; Lai L; Xu ZQ; Wang C; Zhao J; Jin JC; Jiang FL; Liu Y Chemosphere; 2014 Oct; 112():92-9. PubMed ID: 25048893 [TBL] [Abstract][Full Text] [Related]
9. Investigation of biocompatible and protein sensitive highly luminescent quantum dots/nanocrystals of CdSe, CdSe/ZnS and CdSe/CdS. Ratnesh RK; Mehata MS Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():201-210. PubMed ID: 28242450 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation and toxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium. Hu L; Zeng G; Chen G; Huang Z; Wan J; Chen A; Yu Z; Yang J; He K; Qin L Colloids Surf B Biointerfaces; 2017 Nov; 159():303-311. PubMed ID: 28802738 [TBL] [Abstract][Full Text] [Related]
11. Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach. Wang M; Zhang M; Qian J; Zhao F; Shen L; Scholes GD; Winnik MA Langmuir; 2009 Oct; 25(19):11732-40. PubMed ID: 19788225 [TBL] [Abstract][Full Text] [Related]
12. Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. Navarro DA; Bisson MA; Aga DS J Hazard Mater; 2012 Apr; 211-212():427-35. PubMed ID: 22226052 [TBL] [Abstract][Full Text] [Related]
13. Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption. Cooper JK; Franco AM; Gul S; Corrado C; Zhang JZ Langmuir; 2011 Jul; 27(13):8486-93. PubMed ID: 21631120 [TBL] [Abstract][Full Text] [Related]
14. Cyto-/genotoxic effect of CdSe/ZnS quantum dots in human lung adenocarcinoma cells for potential photodynamic UV therapy applications. Choi YJ; Kim YJ; Lee JW; Lee Y; Lim YB; Chung HW J Nanosci Nanotechnol; 2012 Mar; 12(3):2160-8. PubMed ID: 22755033 [TBL] [Abstract][Full Text] [Related]
15. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Zhang W; Chen G; Wang J; Ye BC; Zhong X Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326 [TBL] [Abstract][Full Text] [Related]
16. Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose. Abd Rahman S; Ariffin N; Yusof NA; Abdullah J; Mohammad F; Ahmad Zubir Z; Nik Abd Aziz NMA Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28671559 [TBL] [Abstract][Full Text] [Related]
17. Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine. Hu L; Zhong H; He Z Environ Sci Pollut Res Int; 2020 Apr; 27(10):11116-11126. PubMed ID: 31955336 [TBL] [Abstract][Full Text] [Related]
18. β-Cyclodextrin coated CdSe/ZnS quantum dots for vanillin sensoring in food samples. Durán GM; Contento AM; Ríos Á Talanta; 2015 Jan; 131():286-91. PubMed ID: 25281104 [TBL] [Abstract][Full Text] [Related]
19. CdSe/ZnS quantum dots induce photodynamic effects and cytotoxicity in pancreatic cancer cells. He SJ; Cao J; Li YS; Yang JC; Zhou M; Qu CY; Zhang Y; Shen F; Chen Y; Li MM; Xu LM World J Gastroenterol; 2016 Jun; 22(21):5012-22. PubMed ID: 27275093 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome Profile Alteration with Cadmium Selenide/Zinc Sulfide Quantum Dots in Horstmann C; Kim DS; Campbell C; Kim K Biomolecules; 2019 Oct; 9(11):. PubMed ID: 31731522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]