These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36572325)

  • 21. The construction of a TCM knowledge graph and application of potential knowledge discovery in diabetic kidney disease by integrating diagnosis and treatment guidelines and real-world clinical data.
    Zhao X; Wang Y; Li P; Xu J; Sun Y; Qiu M; Pang G; Wen T
    Front Pharmacol; 2023; 14():1147677. PubMed ID: 37324451
    [No Abstract]   [Full Text] [Related]  

  • 22. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network.
    Peng J; Li J; Shang X
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TCM-ADMEpred: A novel strategy for poly-pharmacokinetics prediction of traditional Chinese medicine based on single constituent pharmacokinetics, structural similarity, and mathematical modeling.
    Wang P; Li K; Tao Y; Li D; Zhang Y; Xu H; Yang H
    J Ethnopharmacol; 2019 May; 236():277-287. PubMed ID: 30826421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geometric molecular graph representation learning model for drug-drug interactions prediction.
    Jiang Z; Ding P; Shen C; Dai X
    IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39226203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graph Representation Learning-Based Fixed-Length Clinical Feature Vector Generation from Heterogeneous Medical Records.
    Seki T; Kawazoe Y; Ohe K
    Stud Health Technol Inform; 2024 Jan; 310():715-719. PubMed ID: 38269902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical Feature Vector Generation using Unsupervised Graph Representation Learning from Heterogeneous Medical Records.
    Seki T; Kawazoe Y; Ohe K
    AMIA Annu Symp Proc; 2023; 2023():618-623. PubMed ID: 38222342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research on Traditional Chinese Medicine: Domain Knowledge Graph Completion and Quality Evaluation.
    Liu C; Li Z; Li J; Qu Y; Chang Y; Han Q; Cao L; Lin S
    JMIR Med Inform; 2024 Aug; 12():e55090. PubMed ID: 39094109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2022 Dec; 23(1):564. PubMed ID: 36581822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model.
    Xue R; Liao J; Shao X; Han K; Long J; Shao L; Ai N; Fan X
    Chem Res Toxicol; 2020 Jan; 33(1):202-210. PubMed ID: 31777246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MolFPG: Multi-level fingerprint-based Graph Transformer for accurate and robust drug toxicity prediction.
    Teng S; Yin C; Wang Y; Chen X; Yan Z; Cui L; Wei L
    Comput Biol Med; 2023 Sep; 164():106904. PubMed ID: 37453376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation.
    Zhang Z; Zhu L; Yu P
    JMIR Med Inform; 2020 May; 8(5):e17637. PubMed ID: 32364514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An inductive knowledge graph embedding via combination of subgraph and type information.
    Liu H; Chen Y; He P; Zhang C; Wu H; Zhang J
    Sci Rep; 2023 Dec; 13(1):21228. PubMed ID: 38040858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network.
    Jiang H; Huang Y
    BMC Bioinformatics; 2022 Jan; 23(1):9. PubMed ID: 34983364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study thought of material basis of secondary development of major traditional Chinese medicine varieties on basis of combination of in vivo and in vitro experiments].
    Cheng XD; Jia XB; Feng L; Jiang J
    Zhongguo Zhong Yao Za Zhi; 2013 Dec; 38(23):4174-80. PubMed ID: 24791512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. HPE-GCN: Predicting efficacy of tonic formulae via graph convolutional networks integrating traditionally defined herbal properties.
    Liu J; Huang Q; Yang X; Ding C
    Methods; 2022 Aug; 204():101-109. PubMed ID: 35597515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ComABAN: refining molecular representation with the graph attention mechanism to accelerate drug discovery.
    Yan H; Xie Y; Liu Y; Yuan L; Sheng R
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35998925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug repositioning based on heterogeneous networks and variational graph autoencoders.
    Lei S; Lei X; Liu L
    Front Pharmacol; 2022; 13():1056605. PubMed ID: 36618933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Galla Chinensis, a Traditional Chinese Medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology.
    Ren YY; Zhang XR; Li TN; Zeng YJ; Wang J; Huang QW
    J Ethnopharmacol; 2021 Oct; 278():114247. PubMed ID: 34052353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting the Associations between Meridians and Chinese Traditional Medicine Using a Cost-Sensitive Graph Convolutional Neural Network.
    Yeh HY; Chao CT; Lai YP; Chen HW
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 31979314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.