These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36572325)
41. [Analysis of traditional Chinese medicine prescriptions based on support vector machine and analytic hierarchy process]. Jin ZL; Hu JX; Jin HW; Zhang LR; Liu ZM Zhongguo Zhong Yao Za Zhi; 2018 Jul; 43(13):2817-2823. PubMed ID: 30111036 [TBL] [Abstract][Full Text] [Related]
42. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding. Yang F; Fan K; Song D; Lin H BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790 [TBL] [Abstract][Full Text] [Related]
43. Discovery of potential asthma targets based on the clinical efficacy of Traditional Chinese Medicine formulas. Wang Y; Chen YJ; Xiang C; Jiang GW; Xu YD; Yin LM; Zhou DD; Liu YY; Yang YQ J Ethnopharmacol; 2020 Apr; 252():112635. PubMed ID: 32004629 [TBL] [Abstract][Full Text] [Related]
44. [Application of drug-target prediction technology in network pharmacology of traditional Chinese medicine]. Wu CW; Lu L; Liang SW; Chen C; Wang SM Zhongguo Zhong Yao Za Zhi; 2016 Feb; 41(3):377-382. PubMed ID: 28868850 [TBL] [Abstract][Full Text] [Related]
45. KG2Vec: A node2vec-based vectorization model for knowledge graph. Wang Y; Dong L; Jiang X; Ma X; Li Y; Zhang H PLoS One; 2021; 16(3):e0248552. PubMed ID: 33784319 [TBL] [Abstract][Full Text] [Related]
46. Dual Representation Learning for Predicting Drug-side Effect Frequency using Protein Target Information. Park S; Lee S; Pak M; Kim S IEEE J Biomed Health Inform; 2024 Jan; PP():. PubMed ID: 38241108 [TBL] [Abstract][Full Text] [Related]
47. MERGE: A Multi-graph Attentive Representation learning framework integrating Group information from similar patients. An Y; Li R; Chen X Comput Biol Med; 2022 Dec; 151(Pt A):106245. PubMed ID: 36335809 [TBL] [Abstract][Full Text] [Related]
48. A dual-modal graph learning framework for identifying interaction events among chemical and biotech drugs. Ru Z; Wu Y; Shao J; Yin J; Qian L; Miao X Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507113 [TBL] [Abstract][Full Text] [Related]
49. A novel hybrid framework for metabolic pathways prediction based on the graph attention network. Yang Z; Liu J; Shah HA; Feng J BMC Bioinformatics; 2022 Sep; 23(Suppl 5):329. PubMed ID: 36171550 [TBL] [Abstract][Full Text] [Related]
50. Deep learning-based transcriptome data classification for drug-target interaction prediction. Xie L; He S; Song X; Bo X; Zhang Z BMC Genomics; 2018 Sep; 19(Suppl 7):667. PubMed ID: 30255785 [TBL] [Abstract][Full Text] [Related]
51. Learning Efficient Hash Codes for Fast Graph-Based Data Similarity Retrieval. Wang J; Xu S; Zheng F; Lu K; Song J; Shao L IEEE Trans Image Process; 2021; 30():6321-6334. PubMed ID: 34224353 [TBL] [Abstract][Full Text] [Related]
52. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Fang S; Dong L; Liu L; Guo J; Zhao L; Zhang J; Bu D; Liu X; Huo P; Cao W; Dong Q; Wu J; Zeng X; Wu Y; Zhao Y Nucleic Acids Res; 2021 Jan; 49(D1):D1197-D1206. PubMed ID: 33264402 [TBL] [Abstract][Full Text] [Related]
53. Unsupervised graph-level representation learning with hierarchical contrasts. Ju W; Gu Y; Luo X; Wang Y; Yuan H; Zhong H; Zhang M Neural Netw; 2023 Jan; 158():359-368. PubMed ID: 36516542 [TBL] [Abstract][Full Text] [Related]
54. A new strategy in drug design of Chinese medicine: theory, method and techniques. Yang HJ; Shen D; Xu HY; Lu P Chin J Integr Med; 2012 Nov; 18(11):803-6. PubMed ID: 23086484 [TBL] [Abstract][Full Text] [Related]
55. A Semantic Analysis and Community Detection-Based Artificial Intelligence Model for Core Herb Discovery from the Literature: Taking Chronic Glomerulonephritis Treatment as a Case Study. Zhang Y; Liu Y; Zhu J; Zhai S; Jin R; Wen C Comput Math Methods Med; 2020; 2020():1862168. PubMed ID: 32952598 [TBL] [Abstract][Full Text] [Related]
56. Calculating the similarity between prescriptions to find their new indications based on graph neural network. Han X; Xie X; Zhao R; Li Y; Ma P; Li H; Chen F; Zhao Y; Tang Z Chin Med; 2024 Sep; 19(1):124. PubMed ID: 39261848 [TBL] [Abstract][Full Text] [Related]
57. Precise prediction of multiple anticancer drug efficacy using multi target regression and support vector regression analysis. Brindha GR; Rishiikeshwer BS; Santhi B; Nakendraprasath K; Manikandan R; Gandomi AH Comput Methods Programs Biomed; 2022 Sep; 224():107027. PubMed ID: 35914385 [TBL] [Abstract][Full Text] [Related]
58. Predicting Drug-Target Affinity by Learning Protein Knowledge From Biological Networks. Ma W; Zhang S; Li Z; Jiang M; Wang S; Guo N; Li Y; Bi X; Jiang H; Wei Z IEEE J Biomed Health Inform; 2023 Apr; 27(4):2128-2137. PubMed ID: 37018115 [TBL] [Abstract][Full Text] [Related]
59. The chemistry and pharmacology of Ligularia przewalskii: A review. Liu SJ; Tang ZS; Liao ZX; Cui CL; Liu HB; Liang YN; Zhang Y; Xu HB; Zhang DB; Zheng YT; Shi HX; Li SY J Ethnopharmacol; 2018 Jun; 219():32-49. PubMed ID: 29526703 [TBL] [Abstract][Full Text] [Related]
60. Bridging multimedia heterogeneity gap via Graph Representation Learning for cross-modal retrieval. Cheng Q; Gu X Neural Netw; 2021 Feb; 134():143-162. PubMed ID: 33310483 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]