BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 36572952)

  • 1. Optogenetic stimulation reveals a latent tipping point in cortical networks during ictogenesis.
    Graham RT; Parrish RR; Alberio L; Johnson EL; Owens L; Trevelyan AJ
    Brain; 2023 Jul; 146(7):2814-2827. PubMed ID: 36572952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antiepileptic and ictogenic effects of optogenetic neurostimulation of PV-expressing interneurons.
    Assaf F; Schiller Y
    J Neurophysiol; 2016 Oct; 116(4):1694-1704. PubMed ID: 27486107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Low-Frequency Stimulation of Specific Neuronal Populations Abates Ictogenesis.
    Shiri Z; Lévesque M; Etter G; Manseau F; Williams S; Avoli M
    J Neurosci; 2017 Mar; 37(11):2999-3008. PubMed ID: 28209738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity.
    Sessolo M; Marcon I; Bovetti S; Losi G; Cammarota M; Ratto GM; Fellin T; Carmignoto G
    J Neurosci; 2015 Jul; 35(26):9544-57. PubMed ID: 26134638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of raised intraneuronal chloride to epileptic network activity.
    Alfonsa H; Merricks EM; Codadu NK; Cunningham MO; Deisseroth K; Racca C; Trevelyan AJ
    J Neurosci; 2015 May; 35(20):7715-26. PubMed ID: 25995461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disrupting Epileptiform Activity by Preventing Parvalbumin Interneuron Depolarization Block.
    Călin A; Ilie AS; Akerman CJ
    J Neurosci; 2021 Nov; 41(45):9452-9465. PubMed ID: 34611025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitatory effects of parvalbumin-expressing interneurons maintain hippocampal epileptiform activity via synchronous afterdischarges.
    Ellender TJ; Raimondo JV; Irkle A; Lamsa KP; Akerman CJ
    J Neurosci; 2014 Nov; 34(46):15208-22. PubMed ID: 25392490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization of GABAergic interneuronal networks during seizure-like activity in the rat horizontal hippocampal slice.
    Velazquez JL; Carlen PL
    Eur J Neurosci; 1999 Nov; 11(11):4110-8. PubMed ID: 10583499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex.
    Yekhlef L; Breschi GL; Lagostena L; Russo G; Taverna S
    J Neurophysiol; 2015 Mar; 113(5):1616-30. PubMed ID: 25505119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal synchrony and the transition to spontaneous seizures.
    Grasse DW; Karunakaran S; Moxon KA
    Exp Neurol; 2013 Oct; 248():72-84. PubMed ID: 23707218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interneuronal Network Activity at the Onset of Seizure-Like Events in Entorhinal Cortex Slices.
    Librizzi L; Losi G; Marcon I; Sessolo M; Scalmani P; Carmignoto G; de Curtis M
    J Neurosci; 2017 Oct; 37(43):10398-10407. PubMed ID: 28947576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation.
    Chang M; Dian JA; Dufour S; Wang L; Moradi Chameh H; Ramani M; Zhang L; Carlen PL; Womelsdorf T; Valiante TA
    Neurobiol Dis; 2018 Jan; 109(Pt A):102-116. PubMed ID: 29024712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of in vitro epileptiform activity by optogenetic stimulation of parvalbumin-positive interneurons.
    Wang S; Kfoury C; Marion A; Lévesque M; Avoli M
    J Neurophysiol; 2022 Oct; 128(4):837-846. PubMed ID: 36043700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH
    Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons.
    Schwindt P; Crill W
    J Neurophysiol; 1999 Mar; 81(3):1341-54. PubMed ID: 10085360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-ictal- and ictal-like epileptic discharges in the dendritic tree of neocortical pyramidal neurons.
    Schiller Y
    J Neurophysiol; 2002 Dec; 88(6):2954-62. PubMed ID: 12466421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of KCC2-dependent potassium efflux in 4-Aminopyridine-induced Epileptiform synchronization.
    González OC; Shiri Z; Krishnan GP; Myers TL; Williams S; Avoli M; Bazhenov M
    Neurobiol Dis; 2018 Jan; 109(Pt A):137-147. PubMed ID: 29045814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetics for controlling seizure circuits for translational approaches.
    Ledri M; Andersson M; Wickham J; Kokaia M
    Neurobiol Dis; 2023 Aug; 184():106234. PubMed ID: 37479090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Proposed Mechanism for Spontaneous Transitions between Interictal and Ictal Activity.
    Jacob T; Lillis KP; Wang Z; Swiercz W; Rahmati N; Staley KJ
    J Neurosci; 2019 Jan; 39(3):557-575. PubMed ID: 30446533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.