These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 36573128)
1. A fractional-order mathematical model based on vaccinated and infected compartments of SARS-CoV-2 with a real case study during the last stages of the epidemiological event. Bilgil H; Yousef A; Erciyes A; Erdinç Ü; Öztürk Z J Comput Appl Math; 2023 Jun; 425():115015. PubMed ID: 36573128 [TBL] [Abstract][Full Text] [Related]
2. To study the transmission dynamic of SARS-CoV-2 using nonlinear saturated incidence rate. Shah K; Abdeljawad T; Ud Din R Physica A; 2022 Oct; 604():127915. PubMed ID: 35874925 [TBL] [Abstract][Full Text] [Related]
3. A mathematical model of mobility-related infection and vaccination in an epidemiological case. Bozkurt F; Baleanu D; Bilgil H Comput Methods Biomech Biomed Engin; 2024 Jul; ():1-21. PubMed ID: 38982901 [TBL] [Abstract][Full Text] [Related]
4. Mathematical Modelling of the Spatial Distribution of a COVID-19 Outbreak with Vaccination Using Diffusion Equation. Kammegne B; Oshinubi K; Babasola O; Peter OJ; Longe OB; Ogunrinde RB; Titiloye EO; Abah RT; Demongeot J Pathogens; 2023 Jan; 12(1):. PubMed ID: 36678436 [TBL] [Abstract][Full Text] [Related]
5. Theoretical and numerical analysis of novel COVID-19 via fractional order mathematical model. Ali A; Khan MY; Sinan M; Allehiany FM; Mahmoud EE; Abdel-Aty AH; Ali G Results Phys; 2021 Jan; 20():103676. PubMed ID: 33318893 [TBL] [Abstract][Full Text] [Related]
6. The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model. Ali A; Ullah S; Khan MA Nonlinear Dyn; 2022; 110(4):3921-3940. PubMed ID: 36060280 [TBL] [Abstract][Full Text] [Related]
7. Mathematical assessment of monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach. Liu B; Farid S; Ullah S; Altanji M; Nawaz R; Wondimagegnhu Teklu S Sci Rep; 2023 Aug; 13(1):13550. PubMed ID: 37599330 [TBL] [Abstract][Full Text] [Related]
8. A fractional-order mathematical model for COVID-19 outbreak with the effect of symptomatic and asymptomatic transmissions. Ali Z; Rabiei F; Rashidi MM; Khodadadi T Eur Phys J Plus; 2022; 137(3):395. PubMed ID: 35368740 [TBL] [Abstract][Full Text] [Related]
9. Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Naik PA; Zu J; Owolabi KM Chaos Solitons Fractals; 2020 Sep; 138():109826. PubMed ID: 32572309 [TBL] [Abstract][Full Text] [Related]
10. A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model. Sweilam NH; Al-Mekhlafi SM; Baleanu D J Adv Res; 2021 Sep; 32():149-160. PubMed ID: 32864171 [TBL] [Abstract][Full Text] [Related]
11. Fractional model of COVID-19 applied to Galicia, Spain and Portugal. Ndaïrou F; Area I; Nieto JJ; Silva CJ; Torres DFM Chaos Solitons Fractals; 2021 Mar; 144():110652. PubMed ID: 33519122 [TBL] [Abstract][Full Text] [Related]
12. Bimodal antibody-titer decline following BNT162b2 mRNA anti-SARS-CoV-2 vaccination in healthcare workers of the INT - IRCCS "Fondazione Pascale" Cancer Center (Naples, Italy). Isgrò MA; Trillò G; Russo L; Tornesello AL; Buonaguro L; Tornesello ML; Miscio L; Normanno N; Bianchi AAM; Buonaguro FM; Cavalcanti E; Infect Agent Cancer; 2022 Jul; 17(1):40. PubMed ID: 35902961 [TBL] [Abstract][Full Text] [Related]
13. Mathematical assessment of the dynamics of novel coronavirus infection with treatment: A fractional study. Liu X; Ullah S; Alshehri A; Altanji M Chaos Solitons Fractals; 2021 Dec; 153():111534. PubMed ID: 34751202 [TBL] [Abstract][Full Text] [Related]
14. Projections and fractional dynamics of COVID-19 with optimal control strategies. Nabi KN; Kumar P; Erturk VS Chaos Solitons Fractals; 2021 Apr; 145():110689. PubMed ID: 33531738 [TBL] [Abstract][Full Text] [Related]
15. Stability analysis of the hiv model through incommensurate fractional-order nonlinear system. DaŞbaŞi B Chaos Solitons Fractals; 2020 Aug; 137():109870. PubMed ID: 32395039 [TBL] [Abstract][Full Text] [Related]
16. Statistical and computational analysis for corruption and poverty model using Caputo-type fractional differential equations. Abdulwasaa MA; Kawale SV; Abdo MS; Albalwi MD; Shah K; Abdalla B; Abdeljawad T Heliyon; 2024 Feb; 10(3):e25440. PubMed ID: 38327401 [TBL] [Abstract][Full Text] [Related]
17. Design of a nonlinear model for the propagation of COVID-19 and its efficient nonstandard computational implementation. Rafiq M; Macías-Díaz JE; Raza A; Ahmed N Appl Math Model; 2021 Jan; 89():1835-1846. PubMed ID: 32982020 [TBL] [Abstract][Full Text] [Related]
18. A new fractional mathematical modelling of COVID-19 with the availability of vaccine. Kumar P; Erturk VS; Murillo-Arcila M Results Phys; 2021 May; 24():104213. PubMed ID: 33898210 [TBL] [Abstract][Full Text] [Related]
19. Fractional order SIR epidemic model with Beddington-De Angelis incidence and Holling type II treatment rate for COVID-19. Swati ; Nilam J Appl Math Comput; 2022; 68(6):3835-3859. PubMed ID: 35013679 [TBL] [Abstract][Full Text] [Related]
20. The transmission dynamics of an infectious disease model in fractional derivative with vaccination under real data. Khan MA; DarAssi MH; Ahmad I; Seyam NM; Alzahrani E Comput Biol Med; 2024 Oct; 181():109069. PubMed ID: 39182370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]