These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36573462)
1. A network-based method for identifying cancer driver genes based on node control centrality. Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462 [TBL] [Abstract][Full Text] [Related]
2. CBNA: A control theory based method for identifying coding and non-coding cancer drivers. Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386 [TBL] [Abstract][Full Text] [Related]
3. NIBNA: a network-based node importance approach for identifying breast cancer drivers. Chaudhary MS; Pham VVH; Le TD Bioinformatics; 2021 Sep; 37(17):2521-2528. PubMed ID: 33677485 [TBL] [Abstract][Full Text] [Related]
4. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning. Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033 [TBL] [Abstract][Full Text] [Related]
5. DriverGroup: a novel method for identifying driver gene groups. Pham VVH; Liu L; Bracken CP; Goodall GJ; Li J; Le TD Bioinformatics; 2020 Dec; 36(Suppl_2):i583-i591. PubMed ID: 33381812 [TBL] [Abstract][Full Text] [Related]
6. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related]
7. GenHITS: A network science approach to driver gene detection in human regulatory network using gene's influence evaluation. Akhavan-Safar M; Teimourpour B; Kargari M J Biomed Inform; 2021 Feb; 114():103661. PubMed ID: 33326867 [TBL] [Abstract][Full Text] [Related]
8. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
9. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism. Peng W; Wu R; Dai W; Yu N BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646 [TBL] [Abstract][Full Text] [Related]
10. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A; Chapuy B; Varelas X; Sebastiani P; Monti S Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402 [TBL] [Abstract][Full Text] [Related]
11. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes. Dopazo J; Erten C BMC Syst Biol; 2017 Nov; 11(1):110. PubMed ID: 29166896 [TBL] [Abstract][Full Text] [Related]
12. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer. Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346 [TBL] [Abstract][Full Text] [Related]
13. pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers. Pham VVH; Liu L; Bracken CP; Nguyen T; Goodall GJ; Li J; Le TD Bioinformatics; 2021 Oct; 37(19):3285-3292. PubMed ID: 33904576 [TBL] [Abstract][Full Text] [Related]
14. MiRNA-gene network embedding for predicting cancer driver genes. Peng W; Wu R; Dai W; Ning Y; Fu X; Liu L; Liu L Brief Funct Genomics; 2023 Jul; 22(4):341-350. PubMed ID: 36752023 [TBL] [Abstract][Full Text] [Related]
15. ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer. Baur B; Bozdag S Genomics; 2017 Jul; 109(3-4):233-240. PubMed ID: 28438487 [TBL] [Abstract][Full Text] [Related]
16. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways. Wang J; Yang Z; Domeniconi C; Zhang X; Yu G Brief Bioinform; 2021 Mar; 22(2):1984-1999. PubMed ID: 32103253 [TBL] [Abstract][Full Text] [Related]
18. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data. Xu T; Le TD; Liu L; Wang R; Sun B; Li J PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433 [TBL] [Abstract][Full Text] [Related]
19. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes. Shinden Y; Hirashima T; Nohata N; Toda H; Okada R; Asai S; Tanaka T; Hozaka Y; Ohtsuka T; Kijima Y; Seki N J Hum Genet; 2021 May; 66(5):519-534. PubMed ID: 33177704 [TBL] [Abstract][Full Text] [Related]
20. Discovery of cancer common and specific driver gene sets. Zhang J; Zhang S Nucleic Acids Res; 2017 Jun; 45(10):e86. PubMed ID: 28168295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]