BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36573462)

  • 1. A network-based method for identifying cancer driver genes based on node control centrality.
    Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y
    Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CBNA: A control theory based method for identifying coding and non-coding cancer drivers.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD
    PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NIBNA: a network-based node importance approach for identifying breast cancer drivers.
    Chaudhary MS; Pham VVH; Le TD
    Bioinformatics; 2021 Sep; 37(17):2521-2528. PubMed ID: 33677485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning.
    Zhou W; Zhao Z; Wang R; Han Y; Wang C; Yang F; Han Y; Liang H; Qi L; Wang C; Guo Z; Gu Y
    Mol Oncol; 2017 Oct; 11(10):1459-1474. PubMed ID: 28719033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DriverGroup: a novel method for identifying driver gene groups.
    Pham VVH; Liu L; Bracken CP; Goodall GJ; Li J; Le TD
    Bioinformatics; 2020 Dec; 36(Suppl_2):i583-i591. PubMed ID: 33381812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GenHITS: A network science approach to driver gene detection in human regulatory network using gene's influence evaluation.
    Akhavan-Safar M; Teimourpour B; Kargari M
    J Biomed Inform; 2021 Feb; 114():103661. PubMed ID: 33326867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying cancer driver genes based on multi-view heterogeneous graph convolutional network and self-attention mechanism.
    Peng W; Wu R; Dai W; Yu N
    BMC Bioinformatics; 2023 Jan; 24(1):16. PubMed ID: 36639646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes.
    Dopazo J; Erten C
    BMC Syst Biol; 2017 Nov; 11(1):110. PubMed ID: 29166896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.
    Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM
    Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers.
    Pham VVH; Liu L; Bracken CP; Nguyen T; Goodall GJ; Li J; Le TD
    Bioinformatics; 2021 Oct; 37(19):3285-3292. PubMed ID: 33904576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MiRNA-gene network embedding for predicting cancer driver genes.
    Peng W; Wu R; Dai W; Ning Y; Fu X; Liu L; Liu L
    Brief Funct Genomics; 2023 Jul; 22(4):341-350. PubMed ID: 36752023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer.
    Baur B; Bozdag S
    Genomics; 2017 Jul; 109(3-4):233-240. PubMed ID: 28438487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways.
    Wang J; Yang Z; Domeniconi C; Zhang X; Yu G
    Brief Bioinform; 2021 Mar; 22(2):1984-1999. PubMed ID: 32103253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The landscape of candidate driver genes differs between male and female breast cancer.
    Johansson I; Ringnér M; Hedenfalk I
    PLoS One; 2013; 8(10):e78299. PubMed ID: 24194916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.
    Xu T; Le TD; Liu L; Wang R; Sun B; Li J
    PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes.
    Shinden Y; Hirashima T; Nohata N; Toda H; Okada R; Asai S; Tanaka T; Hozaka Y; Ohtsuka T; Kijima Y; Seki N
    J Hum Genet; 2021 May; 66(5):519-534. PubMed ID: 33177704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of cancer common and specific driver gene sets.
    Zhang J; Zhang S
    Nucleic Acids Res; 2017 Jun; 45(10):e86. PubMed ID: 28168295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.