These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36573474)

  • 21. A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy.
    Guo L; Yan Z; Zheng X; Hu L; Yang Y; Wang J
    J Mol Model; 2014 Jul; 20(7):2251. PubMed ID: 24935106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improvement of binding pose prediction of the MR1 covalent ligands by inclusion of simple pharmacophore constraints and structural waters in the docking process.
    Shamsara J; Schüürmann G
    3 Biotech; 2023 Aug; 13(8):279. PubMed ID: 37483466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Covalent docking in CDOCKER.
    Wu Y; Brooks Iii CL
    J Comput Aided Mol Des; 2022 Aug; 36(8):563-574. PubMed ID: 35984589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative study of several algorithms for flexible ligand docking.
    Bursulaya BD; Totrov M; Abagyan R; Brooks CL
    J Comput Aided Mol Des; 2003 Nov; 17(11):755-63. PubMed ID: 15072435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GalaxyDock2-HEME: Protein-ligand docking for heme proteins.
    Lee C; Yang J; Kwon S; Seok C
    J Comput Chem; 2023 May; 44(14):1369-1380. PubMed ID: 36809651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking.
    Röhrig UF; Goullieux M; Bugnon M; Zoete V
    J Chem Inf Model; 2023 Jun; 63(12):3925-3940. PubMed ID: 37285197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins.
    Devaurs D; Antunes DA; Hall-Swan S; Mitchell N; Moll M; Lizée G; Kavraki LE
    BMC Mol Cell Biol; 2019 Sep; 20(1):42. PubMed ID: 31488048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pushing the accuracy limit of shape complementarity for protein-protein docking.
    Yan Y; Huang SY
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):696. PubMed ID: 31874620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity.
    Luo W; Pei J; Zhu Y
    J Mol Model; 2010 May; 16(5):903-13. PubMed ID: 19823881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GM-DockZn: a geometry matching-based docking algorithm for zinc proteins.
    Wang K; Lyu N; Diao H; Jin S; Zeng T; Zhou Y; Wu R
    Bioinformatics; 2020 Jul; 36(13):4004-4011. PubMed ID: 32369579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards Effective Consensus Scoring in Structure-Based Virtual Screening.
    Nhat Phuong D; Flower DR; Chattopadhyay S; Chattopadhyay AK
    Interdiscip Sci; 2023 Mar; 15(1):131-145. PubMed ID: 36550341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient conformational sampling and weak scoring in docking programs? Strategy of the wisdom of crowds.
    Chaput L; Mouawad L
    J Cheminform; 2017 Jun; 9(1):37. PubMed ID: 29086077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Evaluation of 10 Docking Programs on a Diverse Set of Protein-Cyclic Peptide Complexes.
    Zhao H; Jiang D; Shen C; Zhang J; Zhang X; Wang X; Nie D; Hou T; Kang Y
    J Chem Inf Model; 2024 Mar; 64(6):2112-2124. PubMed ID: 38483249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints.
    Ouyang X; Zhou S; Su CT; Ge Z; Li R; Kwoh CK
    J Comput Chem; 2013 Feb; 34(4):326-36. PubMed ID: 23034731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RRDB: a comprehensive and non-redundant benchmark for RNA-RNA docking and scoring.
    Yan Y; Huang SY
    Bioinformatics; 2018 Feb; 34(3):453-458. PubMed ID: 29028888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SODOCK: swarm optimization for highly flexible protein-ligand docking.
    Chen HM; Liu BF; Huang HL; Hwang SF; Ho SY
    J Comput Chem; 2007 Jan; 28(2):612-23. PubMed ID: 17186483
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FWAVina: A novel optimization algorithm for protein-ligand docking based on the fireworks algorithm.
    Li J; Song Y; Li F; Zhang H; Liu W
    Comput Biol Chem; 2020 Oct; 88():107363. PubMed ID: 32861160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.