These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36573474)

  • 41. DOCKTITE-a highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment.
    Scholz C; Knorr S; Hamacher K; Schmidt B
    J Chem Inf Model; 2015 Feb; 55(2):398-406. PubMed ID: 25541749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases.
    Ma Z; Huang SY; Cheng F; Zou X
    J Phys Chem B; 2021 Mar; 125(9):2288-2298. PubMed ID: 33651624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Covalent Docking in Drug Discovery: Scope and Limitations.
    Scarpino A; Ferenczy GG; Keserű GM
    Curr Pharm Des; 2020; 26(44):5684-5699. PubMed ID: 33155894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.
    Moitessier N; Pottel J; Therrien E; Englebienne P; Liu Z; Tomberg A; Corbeil CR
    Acc Chem Res; 2016 Sep; 49(9):1646-57. PubMed ID: 27529781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
    Santos KB; Guedes IA; Karl ALM; Dardenne LE
    J Chem Inf Model; 2020 Feb; 60(2):667-683. PubMed ID: 31922754
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring.
    Zhu K; Borrelli KW; Greenwood JR; Day T; Abel R; Farid RS; Harder E
    J Chem Inf Model; 2014 Jul; 54(7):1932-40. PubMed ID: 24916536
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast docking using the CHARMM force field with EADock DSS.
    Grosdidier A; Zoete V; Michielin O
    J Comput Chem; 2011 Jul; 32(10):2149-59. PubMed ID: 21541955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development and validation of a modular, extensible docking program: DOCK 5.
    Moustakas DT; Lang PT; Pegg S; Pettersen E; Kuntz ID; Brooijmans N; Rizzo RC
    J Comput Aided Mol Des; 2006; 20(10-11):601-19. PubMed ID: 17149653
    [TBL] [Abstract][Full Text] [Related]  

  • 50. farPPI: a webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods.
    Wang Z; Wang X; Li Y; Lei T; Wang E; Li D; Kang Y; Zhu F; Hou T
    Bioinformatics; 2019 May; 35(10):1777-1779. PubMed ID: 30329012
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SPOT-Ligand: Fast and effective structure-based virtual screening by binding homology search according to ligand and receptor similarity.
    Yang Y; Zhan J; Zhou Y
    J Comput Chem; 2016 Jul; 37(18):1734-9. PubMed ID: 27074979
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Re-Exploring the Ability of Common Docking Programs to Correctly Reproduce the Binding Modes of Non-Covalent Inhibitors of SARS-CoV-2 Protease M
    Bassani D; Pavan M; Bolcato G; Sturlese M; Moro S
    Pharmaceuticals (Basel); 2022 Jan; 15(2):. PubMed ID: 35215293
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Benchmarking GPCR homology model template selection in combination with de novo loop generation.
    Szwabowski GL; Castleman PN; Sears CK; Wink LH; Cole JA; Baker DL; Parrill AL
    J Comput Aided Mol Des; 2020 Oct; 34(10):1027-1044. PubMed ID: 32737667
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Random drift particle swarm optimisation algorithm for highly flexible protein-ligand docking.
    Fu Y; Chen Z; Sun J
    J Theor Biol; 2018 Nov; 457():180-189. PubMed ID: 30170044
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest.
    Wang C; Zhang Y
    J Comput Chem; 2017 Jan; 38(3):169-177. PubMed ID: 27859414
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening.
    Zavodszky MI; Sanschagrin PC; Korde RS; Kuhn LA
    J Comput Aided Mol Des; 2002 Dec; 16(12):883-902. PubMed ID: 12825621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. GalaxyDock2: protein-ligand docking using beta-complex and global optimization.
    Shin WH; Kim JK; Kim DS; Seok C
    J Comput Chem; 2013 Nov; 34(30):2647-56. PubMed ID: 24108416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.