These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36573556)

  • 21. Bioinspired surfaces with special wettability.
    Sun T; Feng L; Gao X; Jiang L
    Acc Chem Res; 2005 Aug; 38(8):644-52. PubMed ID: 16104687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wetting on regularly structured surfaces from "core-shell" particles: theoretical predictions and experimental findings.
    Synytska A; Ionov L; Dutschk V; Stamm M; Grundke K
    Langmuir; 2008 Oct; 24(20):11895-901. PubMed ID: 18798658
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of superhydrophobic surfaces of hierarchical structure of hybrid from nanoparticles and regular pillar-like pattern.
    Yeh KY; Cho KH; Chen LJ
    Langmuir; 2009 Dec; 25(24):14187-94. PubMed ID: 20560557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature.
    Sun Y; Guo Z
    Nanoscale Horiz; 2019 Jan; 4(1):52-76. PubMed ID: 32254145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities.
    Geraldi NR; Dodd LE; Xu BB; Wood D; Wells GG; McHale G; Newton MI
    Bioinspir Biomim; 2018 Feb; 13(2):024001. PubMed ID: 29239856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reed Leaf-Inspired Graphene Films with Anisotropic Superhydrophobicity.
    Jiang HB; Liu YQ; Zhang YL; Liu Y; Fu XY; Han DD; Song YY; Ren L; Sun HB
    ACS Appl Mater Interfaces; 2018 May; 10(21):18416-18425. PubMed ID: 29722522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review.
    Yang C; Zeng Q; Huang J; Guo Z
    Adv Colloid Interface Sci; 2022 Aug; 306():102724. PubMed ID: 35780752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strelitzia reginae leaf as a natural template for anisotropic wetting and superhydrophobicity.
    Mele E; Girardo S; Pisignano D
    Langmuir; 2012 Mar; 28(11):5312-7. PubMed ID: 22401575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mimicking the rice leaf--from ordered binary structures to anisotropic wettability.
    Zhu D; Li X; Zhang G; Zhang X; Zhang X; Wang T; Yang B
    Langmuir; 2010 Sep; 26(17):14276-83. PubMed ID: 20677764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination.
    Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS
    Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain.
    Park JK; Yang Z; Kim S
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):33333-33340. PubMed ID: 28901732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces.
    Sajadinia SH; Sharif F
    J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces.
    Bixler GD; Bhushan B
    Nanoscale; 2013 Sep; 5(17):7685-710. PubMed ID: 23884183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Existence and role of large micropillars on the leaf surfaces of The President lotus.
    Xiang M; Wilhelm A; Luo C
    Langmuir; 2013 Jun; 29(25):7715-25. PubMed ID: 23718634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) - new design principles for biomimetic materials.
    Schulte AJ; Droste DM; Koch K; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():228-36. PubMed ID: 21977435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From natural to biomimetic: The superhydrophobicity and the contact time.
    Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ
    Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation.
    Yin Q; Guo Q; Wang Z; Chen Y; Duan H; Cheng P
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1979-1987. PubMed ID: 33351582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinational Biomimicking of Lotus Leaf, Mussel, and Sandcastle Worm for Robust Superhydrophobic Surfaces with Biomedical Multifunctionality: Antithrombotic, Antibiofouling, and Tissue Closure Capabilities.
    Han K; Park TY; Yong K; Cha HJ
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9777-9785. PubMed ID: 30785265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.