These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36573579)

  • 1. Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers.
    Alghadeer M; Banerjee A; Hajr A; Hussein H; Fariborzi H; Rao SG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2319-2328. PubMed ID: 36573579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Q trenched aluminum coplanar resonators with an ultrasonic edge microcutting for superconducting quantum devices.
    Zikiy EV; Ivanov AI; Smirnov NS; Moskalev DO; Polozov VI; Matanin AR; Malevannaya EI; Echeistov VV; Konstantinova TG; Rodionov IA
    Sci Rep; 2023 Sep; 13(1):15536. PubMed ID: 37730848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of device geometry and material properties on dielectric losses in superconducting coplanar-waveguide resonators.
    Lahtinen V; Möttönen M
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32485694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum.
    Grünhaupt L; Maleeva N; Skacel ST; Calvo M; Levy-Bertrand F; Ustinov AV; Rotzinger H; Monfardini A; Catelani G; Pop IM
    Phys Rev Lett; 2018 Sep; 121(11):117001. PubMed ID: 30265102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent Coupling of Two Remote Magnonic Resonators Mediated by Superconducting Circuits.
    Li Y; Yefremenko VG; Lisovenko M; Trevillian C; Polakovic T; Cecil TW; Barry PS; Pearson J; Divan R; Tyberkevych V; Chang CL; Welp U; Kwok WK; Novosad V
    Phys Rev Lett; 2022 Jan; 128(4):047701. PubMed ID: 35148146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling Rydberg Atoms to Microwave Fields in a Superconducting Coplanar Waveguide Resonator.
    Morgan AA; Hogan SD
    Phys Rev Lett; 2020 May; 124(19):193604. PubMed ID: 32469590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Demand Storage and Retrieval of Microwave Photons Using a Superconducting Multiresonator Quantum Memory.
    Bao Z; Wang Z; Wu Y; Li Y; Ma C; Song Y; Zhang H; Duan L
    Phys Rev Lett; 2021 Jul; 127(1):010503. PubMed ID: 34270274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators.
    Rochman J; Xie T; Bartholomew JG; Schwab KC; Faraon A
    Nat Commun; 2023 Mar; 14(1):1153. PubMed ID: 36859486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid quantum systems with high-T[Formula: see text] superconducting resonators.
    Velluire-Pellat Z; Maréchal E; Moulonguet N; Saïz G; Ménard GC; Kozlov S; Couëdo F; Amari P; Medous C; Paris J; Hostein R; Lesueur J; Feuillet-Palma C; Bergeal N
    Sci Rep; 2023 Sep; 13(1):14366. PubMed ID: 37658090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum state preparation and tomography of entangled mechanical resonators.
    Wollack EA; Cleland AY; Gruenke RG; Wang Z; Arrangoiz-Arriola P; Safavi-Naeini AH
    Nature; 2022 Apr; 604(7906):463-467. PubMed ID: 35444325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum state transfer and controlled-phase gate on one-dimensional superconducting resonators assisted by a quantum bus.
    Hua M; Tao MJ; Deng FG
    Sci Rep; 2016 Feb; 6():22037. PubMed ID: 26907366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the positions of defects in superconducting quantum bits.
    Bilmes A; Megrant A; Klimov P; Weiss G; Martinis JM; Ustinov AV; Lisenfeld J
    Sci Rep; 2020 Feb; 10(1):3090. PubMed ID: 32080272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconducting coplanar waveguide resonators for low temperature pulsed electron spin resonance spectroscopy.
    Malissa H; Schuster DI; Tyryshkin AM; Houck AA; Lyon SA
    Rev Sci Instrum; 2013 Feb; 84(2):025116. PubMed ID: 23464260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects.
    Niepce D; Burnett JJ; Kudra M; Cole JH; Bylander J
    Sci Adv; 2021 Sep; 7(39):eabh0462. PubMed ID: 34559556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED.
    Hua M; Tao MJ; Deng FG
    Sci Rep; 2015 Mar; 5():9274. PubMed ID: 25787147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making high-quality quantum microwave devices with van der Waals superconductors.
    Antony A; Gustafsson MV; Rajendran A; Benyamini A; Ribeill G; Ohki TA; Hone J; Fong KC
    J Phys Condens Matter; 2021 Dec; 34(10):. PubMed ID: 34847535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperbolic lattices in circuit quantum electrodynamics.
    Kollár AJ; Fitzpatrick M; Houck AA
    Nature; 2019 Jul; 571(7763):45-50. PubMed ID: 31270482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.