BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36573619)

  • 1. Reorganization of three-dimensional chromatin architecture in Medicago truncatula under phosphorus deficiency.
    Wang T; Wang J; Chen L; Yao J; Yuan Z; Zhang D; Zhang WH
    J Exp Bot; 2023 Mar; 74(6):2005-2015. PubMed ID: 36573619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and characterization of cytokinin oxidase/dehydrogenase family genes in Medicago truncatula.
    Wang C; Wang H; Zhu H; Ji W; Hou Y; Meng Y; Wen J; Mysore KS; Li X; Lin H
    J Plant Physiol; 2021 Jan; 256():153308. PubMed ID: 33190018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal change in chromatin accessibility predicts regulators of nodulation in Medicago truncatula.
    Knaack SA; Conde D; Chakraborty S; Balmant KM; Irving TB; Maia LGS; Triozzi PM; Dervinis C; Pereira WJ; Maeda J; Schmidt HW; Ané JM; Kirst M; Roy S
    BMC Biol; 2022 Nov; 20(1):252. PubMed ID: 36352404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of histone modification of MtSERK1 during in vitro regeneration in Medicago truncatula].
    Dong W; Wu P; Liu X; Gao T; Yang N; Song Y
    Sheng Wu Gong Cheng Xue Bao; 2018 Nov; 34(11):1831-1839. PubMed ID: 30499278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula.
    Wang T; Zhao M; Zhang X; Liu M; Yang C; Chen Y; Chen R; Wen J; Mysore KS; Zhang WH
    J Exp Bot; 2017 Dec; 68(21-22):5937-5948. PubMed ID: 29165588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MtNIP5;1, a novel Medicago truncatula boron diffusion facilitator induced under deficiency.
    Granado-Rodríguez S; Bolaños L; Reguera M
    BMC Plant Biol; 2020 Dec; 20(1):552. PubMed ID: 33297962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing.
    Zhao M; Wang T; Sun T; Yu X; Tian R; Zhang WH
    BMC Plant Biol; 2020 Mar; 20(1):99. PubMed ID: 32138663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic regulation of sulfur homeostasis in Medicago truncatula.
    Gao Y; Tian Q; Zhang WH
    Planta; 2014 Jan; 239(1):79-96. PubMed ID: 24068299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective.
    Kumar S; Kaur S; Seem K; Kumar S; Mohapatra T
    Front Cell Dev Biol; 2021; 9():774719. PubMed ID: 34957106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula.
    Konečný J; Hršelová H; Bukovská P; Hujslová M; Jansa J
    PLoS One; 2019; 14(11):e0224938. PubMed ID: 31710651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Six Medicago truncatula Dicer-like protein genes are expressed in plant cells and upregulated in nodules.
    Tworak A; Urbanowicz A; Podkowinski J; Kurzynska-Kokorniak A; Koralewska N; Figlerowicz M
    Plant Cell Rep; 2016 May; 35(5):1043-52. PubMed ID: 26825594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108.
    Wang TZ; Tian QY; Wang BL; Zhao MG; Zhang WH
    BMC Plant Biol; 2014 May; 14():122. PubMed ID: 24885873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolite shift in Medicago truncatula occurs in phosphorus deprivation.
    Dokwal D; Cocuron JC; Alonso AP; Dickstein R
    J Exp Bot; 2022 Apr; 73(7):2093-2111. PubMed ID: 34971389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of structural variants in the whole genome sequences of two Medicago truncatula ecotypes: Jemalong A17 and R108.
    Li A; Liu A; Wu S; Qu K; Hu H; Yang J; Shrestha N; Liu J; Ren G
    BMC Plant Biol; 2022 Feb; 22(1):77. PubMed ID: 35193491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution Hi-C maps highlight multiscale chromatin architecture reorganization during cold stress in Brachypodium distachyon.
    Zhang X; Yu G; Dai Y; Zhang H; Wang K; Han J
    BMC Plant Biol; 2023 May; 23(1):260. PubMed ID: 37193952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome.
    Formey D; Sallet E; Lelandais-Brière C; Ben C; Bustos-Sanmamed P; Niebel A; Frugier F; Combier JP; Debellé F; Hartmann C; Poulain J; Gavory F; Wincker P; Roux C; Gentzbittel L; Gouzy J; Crespi M
    Genome Biol; 2014 Sep; 15(9):457. PubMed ID: 25248950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate application or P deficiency induce a decline in Medicago truncatula N
    Liese R; Schulze J; Cabeza RA
    Sci Rep; 2017 Apr; 7():46264. PubMed ID: 28393902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species.
    Calonne-Salmon M; Plouznikoff K; Declerck S
    Mycorrhiza; 2018 Nov; 28(8):761-771. PubMed ID: 30121903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of MtRAV3 enhances osmotic and salt tolerance and inhibits growth of Medicago truncatula.
    Wang S; Guo T; Shen Y; Wang Z; Kang J; Zhang J; Yi F; Yang Q; Long R
    Plant Physiol Biochem; 2021 Jun; 163():154-165. PubMed ID: 33845331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The R2R3-MYB transcription factor MtMYB134 orchestrates flavonol biosynthesis in Medicago truncatula.
    Naik J; Rajput R; Pucker B; Stracke R; Pandey A
    Plant Mol Biol; 2021 May; 106(1-2):157-172. PubMed ID: 33704646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.