These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36573619)

  • 21. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level.
    Chen L; Wang T; Zhao M; Zhang W
    Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide identification, characterization and expression analysis of
    Zhao Y; Wang L; Zhao P; Liu Z; Guo S; Li Y; Liu H
    PeerJ; 2022; 10():e14034. PubMed ID: 36168431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis.
    Jardinaud MF; Boivin S; Rodde N; Catrice O; Kisiala A; Lepage A; Moreau S; Roux B; Cottret L; Sallet E; Brault M; Emery RJ; Gouzy J; Frugier F; Gamas P
    Plant Physiol; 2016 Jul; 171(3):2256-76. PubMed ID: 27217496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dissection of genetic regulation of compound inflorescence development in
    Cheng X; Li G; Tang Y; Wen J
    Development; 2018 Feb; 145(3):. PubMed ID: 29361570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress.
    Yang M; Wang L; Chen C; Guo X; Lin C; Huang W; Chen L
    Sci Rep; 2021 Nov; 11(1):22933. PubMed ID: 34824334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula.
    Carrï Re SB; Verdenaud M; Gough C; Gouzy JRM; Gamas P
    Plant Cell Physiol; 2020 Jan; 61(1):203-211. PubMed ID: 31605615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and characterization of long non-coding RNAs involved in osmotic and salt stress in Medicago truncatula using genome-wide high-throughput sequencing.
    Wang TZ; Liu M; Zhao MG; Chen R; Zhang WH
    BMC Plant Biol; 2015 Jun; 15():131. PubMed ID: 26048392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.
    Ariel F; Diet A; Verdenaud M; Gruber V; Frugier F; Chan R; Crespi M
    Plant Cell; 2010 Jul; 22(7):2171-83. PubMed ID: 20675575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MtFULc controls inflorescence development by directly repressing MtTFL1 in Medicago truncatula.
    Zhang P; Wang R; Wang X; Mysore KS; Wen J; Meng Y; Gu X; Niu L; Lin H
    J Plant Physiol; 2021 Jan; 256():153329. PubMed ID: 33310391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics.
    Proust H; Hartmann C; Crespi M; Lelandais-Brière C
    Methods Mol Biol; 2018; 1822():205-239. PubMed ID: 30043307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromatin spatial organization of wild type and mutant peanuts reveals high-resolution genomic architecture and interaction alterations.
    Zhang X; Pandey MK; Wang J; Zhao K; Ma X; Li Z; Zhao K; Gong F; Guo B; Varshney RK; Yin D
    Genome Biol; 2021 Nov; 22(1):315. PubMed ID: 34784945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.
    Chen L; Wang T; Zhao M; Tian Q; Zhang WH
    Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic analysis of tolerance to boron toxicity in the legume Medicago truncatula.
    Bogacki P; Peck DM; Nair RM; Howie J; Oldach KH
    BMC Plant Biol; 2013 Mar; 13():54. PubMed ID: 23531152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nodulation and nitrogen fixation in Medicago truncatula strongly alters the abundance of its root microbiota and subtly affects its structure.
    Tkacz A; Ledermann R; Martyn A; Schornack S; Oldroyd GED; Poole PS
    Environ Microbiol; 2022 Nov; 24(11):5524-5533. PubMed ID: 36054464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Medicago truncatula Genome: Genomic Data Availability.
    Burks D; Azad R; Wen J; Dickstein R
    Methods Mol Biol; 2018; 1822():39-59. PubMed ID: 30043295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model Legumes: Functional Genomics Tools in Medicago truncatula.
    Cañas LA; Beltrán JP
    Methods Mol Biol; 2018; 1822():11-37. PubMed ID: 30043294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency.
    Andaluz S; Rodríguez-Celma J; Abadía A; Abadía J; López-Millán AF
    Plant Physiol Biochem; 2009; 47(11-12):1082-8. PubMed ID: 19716309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice.
    Wu X; Gaffney B; Hunt AG; Li QQ
    BMC Genomics; 2014 Jul; 15(1):615. PubMed ID: 25048171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes.
    Pennycooke JC; Cheng H; Stockinger EJ
    Plant Physiol; 2008 Mar; 146(3):1242-54. PubMed ID: 18218976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nuclear and cytoplasmic lncRNAs in root tips of the model legume Medicago truncatula under control and submergence.
    Reynoso MA; Blanco FA; Zanetti ME
    IUBMB Life; 2023 Jul; 75(7):580-594. PubMed ID: 36852968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.