These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36573670)

  • 1. Emulating Titin by a Multidomain DNA Structure.
    Cao N; Cai W; Qian L; Nie Z; Mao C; Cui S
    ACS Macro Lett; 2023 Jan; 12(1):59-64. PubMed ID: 36573670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic molecular model of the reversible unfolding and refolding of titin under force extension.
    Zhang B; Xu G; Evans JS
    Biophys J; 1999 Sep; 77(3):1306-15. PubMed ID: 10465743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete unfolding of the titin molecule under external force.
    Kellermayer MS; Smith SB; Bustamante C; Granzier HL
    J Struct Biol; 1998; 122(1-2):197-205. PubMed ID: 9724621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulling single molecules of titin by AFM--recent advances and physiological implications.
    Linke WA; Grützner A
    Pflugers Arch; 2008 Apr; 456(1):101-15. PubMed ID: 18058125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible unfolding of individual titin immunoglobulin domains by AFM.
    Rief M; Gautel M; Oesterhelt F; Fernandez JM; Gaub HE
    Science; 1997 May; 276(5315):1109-12. PubMed ID: 9148804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin.
    Tong B; Tian F; Zheng P
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules.
    Zhang B; Evans JS
    Biophys J; 2001 Feb; 80(2):597-605. PubMed ID: 11159428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy.
    Staple DB; Payne SH; Reddin AL; Kreuzer HJ
    Phys Rev Lett; 2008 Dec; 101(24):248301. PubMed ID: 19113678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding-unfolding transitions in single titin molecules characterized with laser tweezers.
    Kellermayer MS; Smith SB; Granzier HL; Bustamante C
    Science; 1997 May; 276(5315):1112-6. PubMed ID: 9148805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: titin is an adjustable spring.
    Helmes M; Trombitás K; Centner T; Kellermayer M; Labeit S; Linke WA; Granzier H
    Circ Res; 1999 Jun; 84(11):1339-52. PubMed ID: 10364572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.
    Gil-Redondo JC; Weber A; Toca-Herrera JL
    Microsc Res Tech; 2022 Aug; 85(8):3025-3036. PubMed ID: 35502131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule measurements of titin elasticity.
    Wang K; Forbes JG; Jin AJ
    Prog Biophys Mol Biol; 2001; 77(1):1-44. PubMed ID: 11473785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains.
    Garcia TI; Oberhauser AF; Braun W
    Proteins; 2009 May; 75(3):706-18. PubMed ID: 19003986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
    Minajeva A; Kulke M; Fernandez JM; Linke WA
    Biophys J; 2001 Mar; 80(3):1442-51. PubMed ID: 11222304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Work of Titin Protein Folding as a Major Driver in Muscle Contraction.
    Eckels EC; Tapia-Rojo R; Rivas-Pardo JA; Fernández JM
    Annu Rev Physiol; 2018 Feb; 80():327-351. PubMed ID: 29433413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed biomaterials to mimic the mechanical properties of muscles.
    Lv S; Dudek DM; Cao Y; Balamurali MM; Gosline J; Li H
    Nature; 2010 May; 465(7294):69-73. PubMed ID: 20445626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding forces of titin and fibronectin domains directly measured by AFM.
    Rief M; Gautel M; Gaub HE
    Adv Exp Med Biol; 2000; 481():129-36; discussion 137-41. PubMed ID: 10987070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretching and unfolding of multidomain biopolymers: a statistical mechanics theory of titin.
    Staple DB; Payne SH; Reddin AL; Kreuzer HJ
    Phys Biol; 2009 Jul; 6(2):025005. PubMed ID: 19571360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.