These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 36573707)

  • 41. Novel Binder with Cross-Linking Reconfiguration Functionality for Silicon Anodes of Lithium-Ion Batteries.
    Ye R; Liu J; Tian J; Deng Y; Yang X; Chen Q; Zhang P; Zhao J
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16820-16829. PubMed ID: 38527957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-Dimensional Crosslinked PAA-TA Hybrid Binders for Long-Cycle-Life SiO
    Tang W; Feng L; Wei X; Lai G; Chen H; Li Z; Huang X; Wu S; Lin Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56910-56918. PubMed ID: 36515974
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of Si/graphite anode composition for new generation Li-ion batteries: a case study.
    Kalafat İ; Yuca N
    Turk J Chem; 2022; 46(6):2112-2122. PubMed ID: 37621354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binder-Free Intertwined Si and MnO
    Yu Z; Guan T; Liu J; Ge M; Zhou L; Cheng Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33316-33324. PubMed ID: 38887818
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cross-Linkable Binders for Si Anodes in High-Energy-Density Lithium-Ion Batteries.
    Xue JX; Jia SX; Xiang TQ; Zhou JJ; Li L
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38458-38465. PubMed ID: 39008897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene-doped silicon-carbon materials with multi-interface structures for lithium-ion battery anodes.
    Li X; Li K; Yuan M; Zhang J; Liu H; Li A; Chen X; Song H
    J Colloid Interface Sci; 2024 Aug; 667():470-477. PubMed ID: 38648703
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries.
    Shi Z; Jiang S; Robertson LA; Zhao Y; Sarnello E; Li T; Chen W; Zhang Z; Zhang L
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57932-57940. PubMed ID: 33326233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensionally multiple protected silicon anode toward ultrahigh areal capacity and stability.
    Zhao J; Xie M; Yang K; Wei D; Zhang C; Wang Z; Yang X
    J Colloid Interface Sci; 2023 Sep; 646():538-546. PubMed ID: 37210901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries.
    Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode.
    Yu P; Li Z; Han M; Yu J
    Small; 2024 Apr; 20(17):e2307494. PubMed ID: 38041468
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Performance Dual-Ion Battery Based on Silicon-Graphene Composite Anode and Expanded Graphite Cathode.
    Liu G; Liu X; Ma X; Tang X; Zhang X; Dong J; Ma Y; Zang X; Cao N; Shao Q
    Molecules; 2023 May; 28(11):. PubMed ID: 37298755
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combining ReaxFF Simulations and Experiments to Evaluate the Structure-Property Characteristics of Polymeric Binders in Si-Based Li-Ion Batteries.
    Bhati M; Nguyen QA; Biswal SL; Senftle TP
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41956-41967. PubMed ID: 34432417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulating Anode-electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium-ion Batteries with High-nickel Layered Oxide Cathodes and Silicon-Graphite Anodes.
    Jin B; Dolocan A; Liu C; Cui Z; Manthiram A
    Angew Chem Int Ed Engl; 2024 Jul; ():e202408021. PubMed ID: 39019796
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Guar Gel Binders for Silicon Nanoparticle Anodes: Relating Binder Rheology to Electrode Performance.
    Dufficy MK; Corder RD; Dennis KA; Fedkiw PS; Khan SA
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51403-51413. PubMed ID: 34664928
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Cellulose Reinforced Multifunctional Binder for High-Performance Silicon Anodes.
    Hou K; Li X; Wang C; Yang H; Zhao J; Li J; Shang Y; Su H; Liu H
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53455-53463. PubMed ID: 37940602
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Endotenon Sheath-Inspired Double-Network Binder Enables Superior Cycling Performance of Silicon Electrodes.
    Jiang M; Mu P; Zhang H; Dong T; Tang B; Qiu H; Chen Z; Cui G
    Nanomicro Lett; 2022 Apr; 14(1):87. PubMed ID: 35362872
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries.
    Nam J; Kim E; K K R; Kim Y; Kim TH
    Sci Rep; 2020 Sep; 10(1):14966. PubMed ID: 32917911
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Long J; He W; Liao H; Ye W; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10726-10734. PubMed ID: 36787129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Situ Room-Temperature Cross-Linked Highly Branched Biopolymeric Binder Based on the Diels-Alder Reaction for High-Performance Silicon Anodes in Lithium-Ion Batteries.
    Cai Z; Hu S; Wei Y; Huang T; Yu A; Zhang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56095-56108. PubMed ID: 34727688
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Value Utilization of Silicon Cutting Waste and Excrementum Bombycis to Synthesize Silicon-Carbon Composites as Anode Materials for Li-Ion Batteries.
    Ji H; Li J; Li S; Cui Y; Liu Z; Huang M; Xu C; Li G; Zhao Y; Li H
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.