These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3657399)

  • 1. Water phases in rat striated muscles as determined by T2 proton NMR relaxation times.
    Le Rumeur E; De Certaines J; Toulouse P; Rochcongar P
    Magn Reson Imaging; 1987; 5(4):267-72. PubMed ID: 3657399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of gadolinium DTPA on tissue water compartments in slow- and fast-twitch rabbit muscles.
    Adzamli IK; Jolesz FA; Bleier AR; Mulkern RV; Sandor T
    Magn Reson Med; 1989 Aug; 11(2):172-81. PubMed ID: 2779410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR spin-lattice relaxation in tissues with high concentration of paramagnetic contrast media: evaluation of water exchange rates in intact rat muscle.
    Sobol WT; Jackels SC; Cothran RL; Hinson WH
    Med Phys; 1991; 18(2):243-50. PubMed ID: 2046611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological implications of androgen dependent changes in proton-NMR relaxation times in rat ventral prostate.
    Braunschweiger PG; Glode LM; Maring EM; Machus K; Reynolds K
    Prostate; 1986; 9(3):283-94. PubMed ID: 3095803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous measurement of cell volume changes in perfused rat salivary glands by proton NMR.
    Larcombe-McDouall JB; Seo Y; Steward MC
    Magn Reson Med; 1994 Feb; 31(2):131-8. PubMed ID: 8133748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of biexponential T2 relaxation in muscle water.
    Cole WC; LeBlanc AD; Jhingran SG
    Magn Reson Med; 1993 Jan; 29(1):19-24. PubMed ID: 8419738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water permeability of acinar cell membranes in the isolated perfused rabbit mandibular salivary gland.
    Steward MC; Seo Y; Rawlings JM; Case RM
    J Physiol; 1990 Dec; 431():571-83. PubMed ID: 1966053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI of human tumor xenografts in vivo: proton relaxation times and extracellular tumor volume.
    Jakobsen I; Lyng H; Kaalhus O; Rofstad EK
    Magn Reson Imaging; 1995; 13(5):693-700. PubMed ID: 8569443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular and extracellular spaces of normal adult rat brain determined from the proton nuclear magnetic resonance relaxation times.
    Haida M; Yamamoto M; Matsumura H; Shinohara Y; Fukuzaki M
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):552-6. PubMed ID: 2821030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H-NMR relaxation times and water compartmentalization in experimental tumor models.
    Braunschweiger PG; Schiffer LM; Furmanski P
    Magn Reson Imaging; 1986; 4(4):335-42. PubMed ID: 3669948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerosolized gadolinium-DTPA enhances the magnetic resonance signal of extravascular lung water.
    Montgomery AB; Paajanen H; Brasch RC; Murray JF
    Invest Radiol; 1987 May; 22(5):377-81. PubMed ID: 3597005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental acute pancreatitis: MR relaxation time studies using gadolinium-DTPA.
    Paajanen H; Brasch RC; Dean PB
    Magn Reson Med; 1988 Jan; 6(1):63-73. PubMed ID: 3352506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The measurement of extracellular water volumes in tissues by gadolinium modification of 1H-NMR spin lattice (T1) relaxation.
    Braunschweiger PG; Schiffer L; Furmanski P
    Magn Reson Imaging; 1986; 4(4):285-91. PubMed ID: 3118123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial sodium nuclear magnetic resonance relaxation times in perfused hearts.
    Foy BD; Burstein D
    Biophys J; 1990 Jul; 58(1):127-34. PubMed ID: 2383627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR compartmentalization of free water in the perfused rat heart.
    Mauss Y; Grucker D; Fornasiero D; Chambron J
    Magn Reson Med; 1985 Jun; 2(3):187-94. PubMed ID: 3831688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal proton magnetic resonance and bound and free water distribution in the normal, angiotensin II-and ADH-infused rats, before and after Gd DTPA paramagnetic enhancement.
    Iaina A; Abrashkin S; Weininger J; Azoury R
    Child Nephrol Urol; 1988-1989; 9(1-2):6-10. PubMed ID: 3251623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gadolinium-DTPA enhanced MR imaging of intramuscular abscesses.
    Paajanen H; Grodd W; Revel D; Engelstad B; Brasch RC
    Magn Reson Imaging; 1987; 5(2):109-15. PubMed ID: 3586878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of extracellular/intracellular fluid ratios from magnetic resonance images: accuracy, feasibility, and implementation.
    Martin MA; Tatton WG; Lemaire C; Armstrong RL
    Magn Reson Med; 1990 Jul; 15(1):58-69. PubMed ID: 2374500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gadolinium-DTPA-enhanced nuclear magnetic resonance imaging of reperfused myocardium: identification of the myocardial bed at risk.
    Schaefer S; Malloy CR; Katz J; Parkey RW; Buja LM; Willerson JT; Peshock RM
    J Am Coll Cardiol; 1988 Oct; 12(4):1064-72. PubMed ID: 3417979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR imaging study of the pharmacodynamics of polylysine-gadolinium-DTPA in the rabbit and the rat.
    Van Hecke P; Marchal G; Bosmans H; Johannik K; Jiang Y; Vogler H; Van Ongeval C; Baert AL; Speck U
    Magn Reson Imaging; 1991; 9(3):313-21. PubMed ID: 1881249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.