BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36573998)

  • 1. Cadmium Uptake From Soil by Ornamental Metallophytes: A Meta-analytical Approach.
    Deepika ; Haritash AK
    Environ Manage; 2023 May; 71(5):1087-1097. PubMed ID: 36573998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium uptake from soil and transport by leafy vegetables: A meta-analysis.
    Huang L; Wang Q; Zhou Q; Ma L; Wu Y; Liu Q; Wang S; Feng Y
    Environ Pollut; 2020 Sep; 264():114677. PubMed ID: 32388299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of Cadmium-Contaminated Soils: A Review of New Cadmium Hyperaccumulators and Factors Affecting their Efficiency.
    Soubasakou G; Cavoura O; Damikouka I
    Bull Environ Contam Toxicol; 2022 Nov; 109(5):783-787. PubMed ID: 36050577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of phytoremediation capability of French marigold (
    Biswal B; Singh SK; Patra A; Mohapatra KK
    Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A meta-analysis about the accumulation of heavy metals uptake by
    Song W; Wang J; Zhai L; Ge L; Hao S; Shi L; Lian C; Chen C; Shen Z; Chen Y
    Int J Phytoremediation; 2022; 24(7):744-752. PubMed ID: 34493098
    [No Abstract]   [Full Text] [Related]  

  • 6. Rhizospheric Lactobacillus spp. contribute to the high Cd-accumulating characteristics of Phytolacca spp. in acidic Cd-contaminated soil.
    Li X; Li B; Liu Y; Xu J
    Environ Res; 2023 Dec; 238(Pt 2):117270. PubMed ID: 37776944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implication of exogenous abscisic acid (ABA) application on phytoremediation: plants grown in co-contaminated soil.
    Cheng L; Pu L; Li A; Zhu X; Zhao P; Xu X; Lei N; Chen J
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8684-8693. PubMed ID: 34491497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of hyperaccumulation potentials to cadmium (Cd) in six ornamental species (compositae).
    Liu Z; Chen W; He X
    Int J Phytoremediation; 2018; 20(14):1464-1469. PubMed ID: 30652498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of
    Soltani-Gishini MF; Azizian A; Alemzadeh A; Shabani M; Hildebrand D
    Int J Phytoremediation; 2022; 24(11):1133-1140. PubMed ID: 34870525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil.
    Yang J; Huang Y; Zhao G; Li B; Qin X; Xu J; Li X
    Chemosphere; 2022 Jun; 296():134045. PubMed ID: 35183585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of cadmium contaminated alkaline soil using the ornamental hyperaccumulator Mirabilis jalapa L. enhanced by double harvesting: a field study.
    Li X; Chang Z; Lian X; Meng G; Ma J; Guo R; Wang Y
    Environ Sci Pollut Res Int; 2022 May; 29(22):33506-33513. PubMed ID: 35029826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran.
    Hosseinniaee S; Jafari M; Tavili A; Zare S; Cappai G; De Giudici G
    J Environ Manage; 2022 Aug; 315():115184. PubMed ID: 35523070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate correlation analysis of bio-accumulation with soil properties and potential health risks of cadmium and lead in rice seeds and cabbage in pollution zones, China.
    Chen R; Wang Q; Lv J; Wang Z; Gao T
    Environ Geochem Health; 2021 Sep; 43(9):3485-3503. PubMed ID: 33566232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of intercropping on safe agricultural production and phytoremediation of heavy metal-contaminated soils.
    Liu Y; Huang L; Wen Z; Fu Y; Liu Q; Xu S; Li Z; Liu C; Yu C; Feng Y
    Sci Total Environ; 2023 Jun; 875():162700. PubMed ID: 36906036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperaccumulation of Cd by Rorippa globosa (Turcz.) Thell. from soil enriched with different Cd compounds, and impact of soil amendment with glutathione (GSH) on the hyperaccumulation efficiency.
    Dou X; Dai H; Twardowska I; Wei S
    Environ Pollut; 2019 Dec; 255(Pt 2):113270. PubMed ID: 31563768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting.
    Wei SH; Zhou QX
    Environ Sci Pollut Res Int; 2006 May; 13(3):151-5. PubMed ID: 16758704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.