These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36574205)
1. The antagonistic potential of peanut endophytic bacteria against Sclerotium rolfsii causing stem rot. Li L; Wang J; Liu D; Li L; Zhen J; Lei G; Wang B; Yang W Braz J Microbiol; 2023 Mar; 54(1):361-370. PubMed ID: 36574205 [TBL] [Abstract][Full Text] [Related]
2. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716 [TBL] [Abstract][Full Text] [Related]
3. Endophytic Fungi as Potential Biocontrol Agents against Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D Cells; 2022 Aug; 11(17):. PubMed ID: 36078051 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of efficacy and mechanism of Jia S; Song C; Dong H; Yang X; Li X; Ji M; Chu J Front Microbiol; 2023; 14():1111965. PubMed ID: 36876084 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot. Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788 [TBL] [Abstract][Full Text] [Related]
6. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Figueredo MS; Tonelli ML; Ibáñez F; Morla F; Cerioni G; Del Carmen Tordable M; Fabra A Microbiol Res; 2017 Apr; 197():65-73. PubMed ID: 28219527 [TBL] [Abstract][Full Text] [Related]
7. Interrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plants. Figueredo MS; Tonelli ML; Taurian T; Angelini J; Ibanez F; Valetti L; Munoz V; Anzuay MS; Luduena L; Fabra A J Biosci; 2014 Dec; 39(5):877-85. PubMed ID: 25431416 [TBL] [Abstract][Full Text] [Related]
8. Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. Yan L; Wang Z; Song W; Fan P; Kang Y; Lei Y; Wan L; Huai D; Chen Y; Wang X; Sudini H; Liao B BMC Genomics; 2021 Apr; 22(1):276. PubMed ID: 33863285 [TBL] [Abstract][Full Text] [Related]
9. Piperine, Reserpine and β-Sitosterol Attenuate Stem Rot (Sclerotium rolfsii Sacc.) of Groundnut by Inducing the Secretion of defense Enzymes and Phenolic Acids. Lakshmi N; Basha Shaik A; Paramita Pal P; Begum Ahil S; Vittal R; Naik S; Devi Gali U; Sagar Bokka V Chem Biodivers; 2022 Apr; 19(4):e202100880. PubMed ID: 35182415 [TBL] [Abstract][Full Text] [Related]
10. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.). Errakhi R; Lebrihi A; Barakate M J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305 [TBL] [Abstract][Full Text] [Related]
11. Identification and investigation on antagonistic effect of Trichoderma spp. on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition. Shaigan S; Seraji A; Moghaddam SA Pak J Biol Sci; 2008 Oct; 11(19):2346-50. PubMed ID: 19137869 [TBL] [Abstract][Full Text] [Related]
12. Antifungal Activity and Mechanism of Physcion against Liu D; Mao X; Zhang G; He L; Wang L; Zhang F; Wang Q; Zhou L J Agric Food Chem; 2024 Jul; 72(28):15601-15612. PubMed ID: 38950526 [TBL] [Abstract][Full Text] [Related]
13. Involvement of phenazines and lipopeptides in interactions between Pseudomonas species and Sclerotium rolfsii, causal agent of stem rot disease on groundnut. Le CN; Kruijt M; Raaijmakers JM J Appl Microbiol; 2012 Feb; 112(2):390-403. PubMed ID: 22121884 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Current Peanut Fungicides Against Wei X; Langston DB; Mehl HL Plant Dis; 2022 Aug; 106(8):2046-2052. PubMed ID: 35306840 [TBL] [Abstract][Full Text] [Related]
15. Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels. Jogi A; Kerry JW; Brenneman TB; Leebens-Mack JH; Gold SE Microbiol Res; 2016 Mar; 184():1-12. PubMed ID: 26856448 [TBL] [Abstract][Full Text] [Related]
16. Baseline sensitivity and bioactivity of tetramycin against Sclerotium rolfsii isolates in Huanghuai peanut-growing region of China. He Y; Du P; Zhao T; Gao F; Wang M; Zhang J; He L; Cui K; Zhou L Ecotoxicol Environ Saf; 2022 Jun; 238():113580. PubMed ID: 35512475 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea. Singh SP; Gaur R J Appl Microbiol; 2016 Aug; 121(2):506-18. PubMed ID: 27170067 [TBL] [Abstract][Full Text] [Related]
19. First report of Athelia rolfsii (=Sclerotium rolfsii) causing foot rot disease of chia (Salvia hispanica L.) in India. Joy J; Mahadevakumar S; Mamatha Bhanu LS; Niranjan Raj S; Chandranayaka S; Lakshmidevi N Plant Dis; 2022 Feb; ():. PubMed ID: 35134302 [TBL] [Abstract][Full Text] [Related]
20. Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp. Li Y; Guo Q; Wei X; Xue Q; Lai H J Appl Microbiol; 2019 Nov; 127(5):1532-1545. PubMed ID: 31304623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]