These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36574492)

  • 1. Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine Learning.
    Moussa S; Kilgour M; Jans C; Hernandez-Garcia A; Cuperlovic-Culf M; Bengio Y; Simine L
    J Phys Chem B; 2023 Jan; 127(1):62-68. PubMed ID: 36574492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches.
    Oliveira R; Pinho E; Sousa AL; DeStefano JJ; Azevedo NF; Almeida C
    Trends Biotechnol; 2022 May; 40(5):549-563. PubMed ID: 34756455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructive Prediction of Potential RNA Aptamers for a Protein Target.
    Lee W; Han K
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1476-1482. PubMed ID: 31689200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information.
    Ishida R; Adachi T; Yokota A; Yoshihara H; Aoki K; Nakamura Y; Hamada M
    Nucleic Acids Res; 2020 Aug; 48(14):e82. PubMed ID: 32537639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis].
    Han S; Zhao L; Yang G; Qu F
    Se Pu; 2021 Jul; 39(7):721-729. PubMed ID: 34227370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.
    Zhou Q; Xia X; Luo Z; Liang H; Shakhnovich E
    J Chem Theory Comput; 2015 Dec; 11(12):5939-46. PubMed ID: 26642994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico approaches to RNA aptamer design.
    Hamada M
    Biochimie; 2018 Feb; 145():8-14. PubMed ID: 29032056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Modifications for a Next Generation of Nucleic Acid Aptamers.
    Chan KY; Kinghorn AB; Hollenstein M; Tanner JA
    Chembiochem; 2022 Aug; 23(15):e202200006. PubMed ID: 35416400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro selection of protein-binding DNA aptamers as ligands for biosensing applications.
    Navani NK; Mok WK; Yingfu L
    Methods Mol Biol; 2009; 504():399-415. PubMed ID: 19159108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing Secondary Structure Patterns in DNA Aptamers Identified via CompELS.
    Sullivan R; Adams MC; Naik RR; Milam VT
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31010064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel artificial intelligence-based approach for identification of deoxynucleotide aptamers.
    Heredia FL; Roche-Lima A; Parés-Matos EI
    PLoS Comput Biol; 2021 Aug; 17(8):e1009247. PubMed ID: 34343165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers.
    Hoinka J; Zotenko E; Friedman A; Sauna ZE; Przytycka TM
    Bioinformatics; 2012 Jun; 28(12):i215-23. PubMed ID: 22689764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing aptamer function and stability via in vitro selection using modified nucleic acids.
    Meek KN; Rangel AE; Heemstra JM
    Methods; 2016 Aug; 106():29-36. PubMed ID: 27012179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling aptamers with nucleic acid mimics (NAM): From sequence to three-dimensional docking.
    Oliveira R; Pinho E; Sousa AL; Dias Ó; Azevedo NF; Almeida C
    PLoS One; 2022; 17(3):e0264701. PubMed ID: 35320268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of nucleic acid aptamers against lactate dehydrogenase via SELEX and high-throughput sequencing.
    Guo L; Song Y; Yuan Y; Chen J; Liang H; Guo F; Yu Z; Liang P; Wang Y; Wang P
    Anal Bioanal Chem; 2021 Jul; 413(17):4427-4439. PubMed ID: 34028561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancements in Aptamer Discovery Technologies.
    Gotrik MR; Feagin TA; Csordas AT; Nakamoto MA; Soh HT
    Acc Chem Res; 2016 Sep; 49(9):1903-10. PubMed ID: 27526193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for Improving Aptamer Binding Affinity.
    Hasegawa H; Savory N; Abe K; Ikebukuro K
    Molecules; 2016 Mar; 21(4):421. PubMed ID: 27043498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm.
    Torkamanian-Afshar M; Nematzadeh S; Tabarzad M; Najafi A; Lanjanian H; Masoudi-Nejad A
    Mol Divers; 2021 Aug; 25(3):1395-1407. PubMed ID: 33554306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.