BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 36574507)

  • 1. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets.
    Tang C; Tukker A; Sprecher B; Mogollón JM
    Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China.
    Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J
    Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis.
    Zheng Y; Li S; Xu S
    PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles.
    Moro A; Lonza L
    Transp Res D Transp Environ; 2018 Oct; 64():5-14. PubMed ID: 30740029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact assessment of crude oil mix, electricity generation mix, and vehicle technology on road freight emission reduction in China.
    Jiang Z; Yan R; Gong Z; Guan G
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27763-27781. PubMed ID: 36385332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India.
    Peshin T; Sengupta S; Azevedo IML
    Environ Sci Technol; 2022 Jul; 56(13):9569-9582. PubMed ID: 35696339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet.
    Woody M; Vaishnav P; Craig MT; Keoleian GA
    Environ Sci Technol; 2022 Sep; 56(18):13391-13397. PubMed ID: 36018721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrifying passenger road transport in India requires near-term electricity grid decarbonisation.
    Abdul-Manan AFN; Gordillo Zavaleta V; Agarwal AK; Kalghatgi G; Amer AA
    Nat Commun; 2022 Apr; 13(1):2095. PubMed ID: 35440110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marginal Greenhouse Gas Emissions of Ontario's Electricity System and the Implications of Electric Vehicle Charging.
    Gai Y; Wang A; Pereira L; Hatzopoulou M; Posen ID
    Environ Sci Technol; 2019 Jul; 53(13):7903-7912. PubMed ID: 31244061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.
    Kim HC; Wallington TJ; Arsenault R; Bae C; Ahn S; Lee J
    Environ Sci Technol; 2016 Jul; 50(14):7715-22. PubMed ID: 27303957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050.
    Milovanoff A; Kim HC; De Kleine R; Wallington TJ; Posen ID; MacLean HL
    Environ Sci Technol; 2019 Feb; 53(4):2199-2208. PubMed ID: 30682256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles.
    Shen W; Han W; Wallington TJ; Winkler SL
    Environ Sci Technol; 2019 May; 53(10):6063-6072. PubMed ID: 31021614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gas emissions and peak trend of commercial vehicles in China.
    Wang X; Dai M; Wang W; Gao Y; Qi T; Dong X; Ren P; Ding N
    J Environ Manage; 2023 Apr; 331():117262. PubMed ID: 36731334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.
    Huo H; Zhang Q; Liu F; He K
    Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.