These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 36574574)
41. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Dehghani S; Moore F; Keshavarzi B; Hale BA Ecotoxicol Environ Saf; 2017 Feb; 136():92-103. PubMed ID: 27825051 [TBL] [Abstract][Full Text] [Related]
42. Transversal immission patterns and leachability of heavy metals in road side soils. Hjortenkrans DS; Bergbäck BG; Häggerud AV J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541 [TBL] [Abstract][Full Text] [Related]
43. Metal and metalloid accumulation in cultivated urban soils: A medium-term study of trends in Toronto, Canada. Wiseman CL; Zereini F; Püttmann W Sci Total Environ; 2015 Dec; 538():564-72. PubMed ID: 26318809 [TBL] [Abstract][Full Text] [Related]
44. Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses. Kelepertzis E; Argyraki A; Botsou F; Aidona E; Szabó Á; Szabó C Environ Pollut; 2019 Feb; 245():909-920. PubMed ID: 30682748 [TBL] [Abstract][Full Text] [Related]
45. Antimony isotopic composition in river waters affected by ancient mining activity. Resongles E; Freydier R; Casiot C; Viers J; Chmeleff J; Elbaz-Poulichet F Talanta; 2015 Nov; 144():851-61. PubMed ID: 26452900 [TBL] [Abstract][Full Text] [Related]
46. Application of soil magnetometry and geochemical methods to investigate soil contamination with antimony. Jabłońska-Czapla M; Rachwał M; Grygoyć K; Wawer-Liszka M Environ Geochem Health; 2024 Jul; 46(8):287. PubMed ID: 38970741 [TBL] [Abstract][Full Text] [Related]
47. Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS. Amereih S; Meisel T; Scholger R; Wegscheider W J Environ Monit; 2005 Dec; 7(12):1200-6. PubMed ID: 16307072 [TBL] [Abstract][Full Text] [Related]
48. [Assessment of heavy metal contamination by moss-bag method and road-dust method for Taizhou urban area]. Chen Q; Fang YM; Yan Y; Chen BJ Huan Jing Ke Xue; 2014 May; 35(5):1901-8. PubMed ID: 25055684 [TBL] [Abstract][Full Text] [Related]
49. Antimony (Sb) isotopic signature in water systems from the world's largest Sb mine, central China: Novel insights to trace Sb source and mobilization. Wen B; Zhou J; Tang P; Jia X; Zhou W; Huang J J Hazard Mater; 2023 Mar; 446():130622. PubMed ID: 36580776 [TBL] [Abstract][Full Text] [Related]
50. Speciation analysis of inorganic As and Sb in urban dust using slurry sampling and detection by fast sequential hydride generation atomic absorption spectrometry. Ribeiro VS; Souza SO; Costa SSL; Almeida TS; Soares SAR; Korn MGA; Araujo RGO Environ Geochem Health; 2020 Jul; 42(7):2179-2193. PubMed ID: 31853769 [TBL] [Abstract][Full Text] [Related]
51. Potentially toxic elements in the Gusinoye Lake (Republic of Buryatia, Russia). Kosheleva N; Efimova L; Efimov V; Sycheva D Environ Sci Pollut Res Int; 2022 Nov; 29(51):77593-77608. PubMed ID: 35680743 [TBL] [Abstract][Full Text] [Related]
52. Antimony speciation as geochemical tracer for anthropogenic emissions of atmospheric particulate matter. Sánchez-Rodas D; Alsioufi L; Sánchez de la Campa AM; González-Castanedo Y J Hazard Mater; 2017 Feb; 324(Pt B):213-220. PubMed ID: 28340993 [TBL] [Abstract][Full Text] [Related]
53. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
54. Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Najmeddin A; Keshavarzi B; Moore F; Lahijanzadeh A Environ Geochem Health; 2018 Aug; 40(4):1187-1208. PubMed ID: 29081009 [TBL] [Abstract][Full Text] [Related]
55. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source. Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226 [TBL] [Abstract][Full Text] [Related]
56. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. Wiseman CLS; Levesque C; Rasmussen PE Sci Total Environ; 2021 Sep; 786():147467. PubMed ID: 33971596 [TBL] [Abstract][Full Text] [Related]
57. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai-Tibet highway. Zhang H; Wang Z; Zhang Y; Ding M; Li L Sci Total Environ; 2015 Jul; 521-522():160-72. PubMed ID: 25835375 [TBL] [Abstract][Full Text] [Related]
58. Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi'an, China. Shi D; Lu X Sci Total Environ; 2018 Sep; 636():1211-1218. PubMed ID: 29913583 [TBL] [Abstract][Full Text] [Related]
59. Levels, spatial distribution, risk assessment, and sources of environmental contamination vectored by road dust in Cienfuegos (Cuba) revealed by chemical and C and N stable isotope compositions. Morera-Gómez Y; Alonso-Hernández CM; Santamaría JM; Elustondo D; Lasheras E; Widory D Environ Sci Pollut Res Int; 2020 Jan; 27(2):2184-2196. PubMed ID: 31773525 [TBL] [Abstract][Full Text] [Related]
60. Characterization of the contribution of road deposited sediments to the contamination of the close marine environment with trace metals: Case of the port city of Busan (South Korea). Jeong H; Choi JY; Lim J; Shim WJ; Kim YO; Ra K Mar Pollut Bull; 2020 Dec; 161(Pt A):111717. PubMed ID: 33039792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]