BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36574592)

  • 1. Joint segmentation of retinal layers and macular edema in optical coherence tomography scans based on RLMENet.
    Wu J; Liu S; Xiao Z; Zhang F; Geng L
    Med Phys; 2022 Jul; ():. PubMed ID: 36574592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field.
    Chakravarty A; Sivaswamy J
    Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advanced Deep Learning Architectures for Retinal Fluid Segmentation on Optical Coherence Tomography Images.
    Lin M; Bao G; Sang X; Wu Y
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TranSegNet: Hybrid CNN-Vision Transformers Encoder for Retina Segmentation of Optical Coherence Tomography.
    Zhang Y; Li Z; Nan N; Wang X
    Life (Basel); 2023 Apr; 13(4):. PubMed ID: 37109505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
    Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y
    Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-class retinal fluid joint segmentation based on cascaded convolutional neural networks.
    Tang W; Ye Y; Chen X; Shi F; Xiang D; Chen Z; Zhu W
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35613604
    [No Abstract]   [Full Text] [Related]  

  • 8. Exploiting multi-granularity visual features for retinal layer segmentation in human eyes.
    He X; Wang Y; Poiesi F; Song W; Xu Q; Feng Z; Wan Y
    Front Bioeng Biotechnol; 2023; 11():1191803. PubMed ID: 37324431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans.
    Alsaih K; Yusoff MZ; Tang TB; Faye I; Mériaudeau F
    Comput Methods Programs Biomed; 2020 Oct; 195():105566. PubMed ID: 32504911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation.
    Rasti R; Biglari A; Rezapourian M; Yang Z; Farsiu S
    IEEE Trans Med Imaging; 2023 May; 42(5):1413-1423. PubMed ID: 37015695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy.
    Hassan B; Qin S; Ahmed R; Hassan T; Taguri AH; Hashmi S; Werghi N
    Comput Biol Med; 2021 Sep; 136():104727. PubMed ID: 34385089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP).
    Wang YZ; Wu W; Birch DG
    Transl Vis Sci Technol; 2021 Nov; 10(13):9. PubMed ID: 34751740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale dual attention mechanism for fluid segmentation of optical coherence tomography images.
    Chen M; Ma W; Shi L; Li M; Wang C; Zheng G
    Appl Opt; 2021 Aug; 60(23):6761-6768. PubMed ID: 34613154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semantic uncertainty Guided Cross-Transformer for enhanced macular edema segmentation in OCT images.
    Liu H; Gao W; Yang L; Wu D; Zhao D; Chen K; Liu J; Ye Y; Xu RX; Sun M
    Comput Biol Med; 2024 May; 174():108458. PubMed ID: 38631114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-attention CNN for retinal layer segmentation in OCT.
    Cao G; Wu Y; Peng Z; Zhou Z; Dai C
    Biomed Opt Express; 2024 Mar; 15(3):1605-1617. PubMed ID: 38495698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
    Roy AG; Conjeti S; Karri SPK; Sheet D; Katouzian A; Wachinger C; Navab N
    Biomed Opt Express; 2017 Aug; 8(8):3627-3642. PubMed ID: 28856040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Segmentation of Retinal Fluid and Photoreceptor Layer from Optical Coherence Tomography Images of Diabetic Macular Edema Patients Using Deep Learning and Associations with Visual Acuity.
    Hsu HY; Chou YB; Jheng YC; Kao ZK; Huang HY; Chen HR; Hwang DK; Chen SJ; Chiou SH; Wu YT
    Biomedicines; 2022 May; 10(6):. PubMed ID: 35740291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FNeXter: A Multi-Scale Feature Fusion Network Based on ConvNeXt and Transformer for Retinal OCT Fluid Segmentation.
    Niu Z; Deng Z; Gao W; Bai S; Gong Z; Chen C; Rong F; Li F; Ma L
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retinal OCT images with full and sparse annotations.
    Liu H; Wei D; Lu D; Tang X; Wang L; Zheng Y
    Med Image Anal; 2024 Jan; 91():103019. PubMed ID: 37944431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.