These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36574681)

  • 1. Computational design of CRISPR guide RNAs to enable strain-specific control of microbial consortia.
    Rottinghaus AG; Vo S; Moon TS
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2213154120. PubMed ID: 36574681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species- and site-specific genome editing in complex bacterial communities.
    Rubin BE; Diamond S; Cress BF; Crits-Christoph A; Lou YC; Borges AL; Shivram H; He C; Xu M; Zhou Z; Smith SJ; Rovinsky R; Smock DCJ; Tang K; Owens TK; Krishnappa N; Sachdeva R; Barrangou R; Deutschbauer AM; Banfield JF; Doudna JA
    Nat Microbiol; 2022 Jan; 7(1):34-47. PubMed ID: 34873292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPRedict: a CRISPR-Cas9 web tool for interpretable efficiency predictions.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Jul; 50(W1):W191-W198. PubMed ID: 35670672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems.
    Gomaa AA; Klumpe HE; Luo ML; Selle K; Barrangou R; Beisel CL
    mBio; 2014 Jan; 5(1):e00928-13. PubMed ID: 24473129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes.
    Liu Z; Liu J; Yang Z; Zhu L; Zhu Z; Huang H; Jiang L
    Biotechnol Adv; 2023 Nov; 68():108241. PubMed ID: 37633620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.
    Jang YJ; Seo SO; Kim SA; Li L; Kim TJ; Kim SC; Jin YS; Han NS
    J Biotechnol; 2017 Jun; 251():151-155. PubMed ID: 28433723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilizing directed evolution to interrogate and optimize CRISPR/Cas guide RNA scaffolds.
    Bush K; Corsi GI; Yan AC; Haynes K; Layzer JM; Zhou JH; Llanga T; Gorodkin J; Sullenger BA
    Cell Chem Biol; 2023 Aug; 30(8):879-892.e5. PubMed ID: 37390831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering conjugative CRISPR-Cas9 systems for the targeted control of enteric pathogens and antibiotic resistance.
    Sheng H; Wu S; Xue Y; Zhao W; Caplan AB; Hovde CJ; Minnich SA
    PLoS One; 2023; 18(9):e0291520. PubMed ID: 37699034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-engineering a mobile-CRISPR/Cas9 system for antimicrobial resistance gene curing and immunization in Escherichia coli.
    He YZ; Kuang X; Long TF; Li G; Ren H; He B; Yan JR; Liao XP; Liu YH; Chen L; Sun J
    J Antimicrob Chemother; 2021 Dec; 77(1):74-82. PubMed ID: 34613377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA.
    Lee HJ; Kim HJ; Lee SJ
    CRISPR J; 2023 Feb; 6(1):52-61. PubMed ID: 36576897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects.
    Naeem M; Alkhnbashi OS
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.