These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36574684)

  • 41. Delayed Lubricant Depletion of Slippery Liquid Infused Porous Surfaces Using Precision Nanostructures.
    Laney SK; Michalska M; Li T; Ramirez FV; Portnoi M; Oh J; Thayne IG; Parkin IP; Tiwari MK; Papakonstantinou I
    Langmuir; 2021 Aug; 37(33):10071-10078. PubMed ID: 34286995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Liquid-Infused Surfaces with Trapped Air (LISTA) for Drag Force Reduction.
    Hemeda AA; Tafreshi HV
    Langmuir; 2016 Mar; 32(12):2955-62. PubMed ID: 26977775
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface.
    Peppou-Chapman S; Neto C
    Langmuir; 2021 Mar; 37(10):3025-3037. PubMed ID: 33683128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synergistic Benefits of Micro/Nanostructured Oil-Impregnated Surfaces in Reducing Fouling while Enhancing Heat Transfer.
    Kolle S; Davitt A; Zhou Y; Aizenberg J; Adera S
    Langmuir; 2023 May; 39(19):6705-6712. PubMed ID: 37075012
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality.
    Sett S; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36400-36408. PubMed ID: 28950702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nature-Inspired High Temperature Scale-Resistant Slippery Lubricant-Induced Porous Surfaces (HTS-SLIPS).
    Yao X; Lin W; Wang M; Wang S
    Small; 2022 Nov; 18(46):e2203615. PubMed ID: 36148852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study.
    Guo L; Tang GH; Kumar S
    Langmuir; 2019 Dec; 35(49):16377-16387. PubMed ID: 31702932
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates.
    Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Nano Lett; 2013 Apr; 13(4):1793-9. PubMed ID: 23464578
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces.
    Cao Y; Jana S; Tan X; Bowen L; Zhu Y; Dawson J; Han R; Exton J; Liu H; McHale G; Jakubovics NS; Chen J
    Langmuir; 2020 Nov; 36(45):13396-13407. PubMed ID: 33141589
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
    Wilson PW; Lu W; Xu H; Kim P; Kreder MJ; Alvarenga J; Aizenberg J
    Phys Chem Chem Phys; 2013 Jan; 15(2):581-5. PubMed ID: 23183624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application.
    Wang C; Guo Z
    Nanoscale; 2020 Nov; 12(44):22398-22424. PubMed ID: 33174577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physics of pre-wetted, lubricated and impregnated surfaces: a review.
    Bormashenko E
    Philos Trans A Math Phys Eng Sci; 2019 Feb; 377(2138):20180264. PubMed ID: 30967071
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Delaying Ice and Frost Formation Using Phase-Switching Liquids.
    Chatterjee R; Beysens D; Anand S
    Adv Mater; 2019 Apr; 31(17):e1807812. PubMed ID: 30873685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications.
    Vicente A; Rivero PJ; García P; Mora J; Carreño F; Palacio JF; Rodríguez R
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883667
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Slippery liquid-infused porous surfaces with inclined microstructures to enhance durable anti-biofouling performances.
    Cai G; Liu F; Wu T
    Colloids Surf B Biointerfaces; 2021 Jun; 202():111667. PubMed ID: 33706164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Robust and durable liquid-repellent surfaces.
    Chen F; Wang Y; Tian Y; Zhang D; Song J; Crick CR; Carmalt CJ; Parkin IP; Lu Y
    Chem Soc Rev; 2022 Oct; 51(20):8476-8583. PubMed ID: 36189687
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent advances of slippery liquid-infused porous surfaces with anti-corrosion.
    Yan W; Xue S; Bin Xiang ; Zhao X; Zhang W; Mu P; Li J
    Chem Commun (Camb); 2023 Feb; 59(16):2182-2198. PubMed ID: 36723187
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Slippery Liquid-Infused Network-like Surface with Anti/De-icing Properties Constructed Based on the Phosphating Reaction.
    Wei X; Zhong Y; Feng Y; Wei J; Wang J
    Langmuir; 2022 Nov; 38(46):14118-14128. PubMed ID: 36367712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coral-like silicone nanofilament coatings with extremely low ice adhesion.
    Bottone D; Donadei V; Niemelä H; Koivuluoto H; Seeger S
    Sci Rep; 2021 Oct; 11(1):20427. PubMed ID: 34650120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.