BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36574796)

  • 1. Pristine, carboxylated, and hybrid multi-walled carbon nanotubes exert potent antioxidant activities in in vitro-cell free systems.
    Vardakas P; Kartsonakis IA; Kyriazis ID; Kainourgios P; Trompeta AFA; Charitidis CA; Kouretas D
    Environ Res; 2023 Mar; 220():115156. PubMed ID: 36574796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications.
    Cirillo G; Hampel S; Klingeler R; Puoci F; Iemma F; Curcio M; Parisi OI; Spizzirri UG; Picci N; Leonhardt A; Ritschel M; Büchner B
    J Pharm Pharmacol; 2011 Feb; 63(2):179-88. PubMed ID: 21235581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity.
    Mrakovcic M; Meindl C; Leitinger G; Roblegg E; Fröhlich E
    Toxicol Sci; 2015 Mar; 144(1):114-27. PubMed ID: 25505129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes.
    Yan L; Feng M; Liu J; Wang L; Wang Z
    Ecotoxicol Environ Saf; 2016 Mar; 125():61-71. PubMed ID: 26655435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells.
    Nymark P; Jensen KA; Suhonen S; Kembouche Y; Vippola M; Kleinjans J; Catalán J; Norppa H; van Delft J; Briedé JJ
    Part Fibre Toxicol; 2014 Jan; 11():4. PubMed ID: 24438343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxylated multi-walled carbon nanotubes exacerbated oxidative damage in roots of Vicia faba L. seedlings under combined stress of lead and cadmium.
    Rong H; Wang C; Yu X; Fan J; Jiang P; Wang Y; Gan X; Wang Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():616-623. PubMed ID: 29933131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.
    Liu Z; Liu Y; Peng D
    Environ Toxicol Pharmacol; 2016 Oct; 47():124-130. PubMed ID: 27669016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The response effect of pheochromocytoma (PC12) cell lines to oxidized multi-walled carbon nanotubes (o-MWCMTs).
    Phillips CL; Yah CS; Iyuke SE; Pillay V; Rumbold K; Choonara Y
    Afr Health Sci; 2013 Dec; 13(4):947-54. PubMed ID: 24940317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium.
    Wang C; Liu H; Chen J; Tian Y; Shi J; Li D; Guo C; Ma Q
    J Hazard Mater; 2014 Jun; 274():404-12. PubMed ID: 24806869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative analysis for the cytotoxicity and genotoxicity of multi-walled carbon nanotubes with different lengths and surface modifications in A549 cells].
    Pu J; Chen T; Chen ZJ; Wang HF; Nie HY; Jia G
    Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Jun; 45(3):405-11. PubMed ID: 23774918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.
    Wang X; Qu R; Liu J; Wei Z; Wang L; Yang S; Huang Q; Wang Z
    Environ Pollut; 2016 Jan; 208(Pt B):732-8. PubMed ID: 26561447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of different amino acid groups on the free radical scavenging capability of multi walled carbon nanotubes.
    Amiri A; Memarpoor-Yazdi M; Shanbedi M; Eshghi H
    J Biomed Mater Res A; 2013 Aug; 101(8):2219-28. PubMed ID: 23281168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study.
    Zhang T; Tang M; Zhang S; Hu Y; Li H; Zhang T; Xue Y; Pu Y
    Int J Nanomedicine; 2017; 12():1539-1554. PubMed ID: 28280324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion.
    Zhou L; Forman HJ; Ge Y; Lunec J
    Toxicol In Vitro; 2017 Aug; 42():292-298. PubMed ID: 28483489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A holistic study on potential toxic effects of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) on zebrafish (Danio rerio) embryos/larvae.
    Icoglu Aksakal F; Ciltas A; Simsek Ozek N
    Chemosphere; 2019 Jun; 225():820-828. PubMed ID: 30904762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels.
    Wang X; Qu R; Huang Q; Wei Z; Wang Z
    Aquat Toxicol; 2015 Mar; 160():142-50. PubMed ID: 25625523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes.
    Chang S; Zhao X; Li S; Liao T; Long J; Yu Z; Cao Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():569-577. PubMed ID: 29929133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of cytotoxicity of pristine and covalently functionalized multi-walled carbon nanotubes in RAW 264.7 macrophages.
    Luo M; Deng X; Shen X; Dong L; Liu Y
    J Nanosci Nanotechnol; 2012 Jan; 12(1):274-83. PubMed ID: 22523976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low doses of multi-walled carbon nanotubes elicit hepatotoxicity in rats with markers of oxidative stress and induction of pro-inflammatory cytokines.
    Adedara IA; Anao OO; Forcados GE; Awogbindin IO; Agbowo A; Ola-Davies OE; Patlolla AK; Tchounwou PB; Farombi EO
    Biochem Biophys Res Commun; 2018 Sep; 503(4):3167-3173. PubMed ID: 30149914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of Climate Change on the fate and behavior of different carbon nanotubes materials and implication to estuarine invertebrates.
    De Marchi L; Neto V; Pretti C; Chiellini F; Morelli A; Soares AMVM; Figueira E; Freitas R
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 May; 219():103-115. PubMed ID: 30797982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.