BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3657491)

  • 21.
    Wang CY; Liu Y; Huang S; Griswold MA; Seiberlich N; Yu X
    NMR Biomed; 2017 Dec; 30(12):. PubMed ID: 28915341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy.
    Du F; Cooper AJ; Thida T; Sehovic S; Lukas SE; Cohen BM; Zhang X; Ongür D
    JAMA Psychiatry; 2014 Jan; 71(1):19-27. PubMed ID: 24196348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: contractility modifies energy transfer pathways.
    Joubert F; Mazet JL; Mateo P; Hoerter JA
    J Biol Chem; 2002 May; 277(21):18469-76. PubMed ID: 11886866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 31P saturation transfer and phosphocreatine imaging in the monkey brain.
    Mora B; Narasimhan PT; Ross BD; Allman J; Barker PB
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8372-6. PubMed ID: 1924297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient
    Ren J; Sherry AD; Malloy CR
    Magn Reson Med; 2017 Nov; 78(5):1657-1666. PubMed ID: 27868234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of inversion spin transfer to monitor creatine kinase kinetics in rat skeletal muscle in vivo.
    Haseler LJ; Brooks WM; Irving MG; Bulliman BT; Kuchel PW; Doddrell DM
    Biochem Int; 1986 Apr; 12(4):613-8. PubMed ID: 3718523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K; Bottomley PA; Weiss RG
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA
    Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Creatine kinase activity in rat skeletal muscle with intermittent tetanic stimulation.
    Le Rumeur E; Le Moyec L; de Certaines JD
    Magn Reson Med; 1992 Apr; 24(2):335-42. PubMed ID: 1569871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of mitochondrial creatine kinase fluxes in intact heart mitochondria using 31P-saturation transfer nuclear magnetic resonance spectroscopy.
    Jahnke D; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1998 Jul; 1365(3):503-12. PubMed ID: 9711302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 31P NMR saturation transfer measurements of phosphorus exchange reactions in rat heart and kidney in situ.
    Koretsky AP; Wang S; Klein MP; James TL; Weiner MW
    Biochemistry; 1986 Jan; 25(1):77-84. PubMed ID: 3954995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphocreatine and creatine kinase in energetic metabolism of the porcine carotid artery.
    Clark JF; Dillon PF
    J Vasc Res; 1995; 32(1):24-30. PubMed ID: 7873707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.
    Bittl JA; Ingwall JS
    Circ Res; 1986 Mar; 58(3):378-83. PubMed ID: 3013457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ.
    Holtzman D; Mulkern R; Tsuji M; Cook C; Meyers R
    Dev Neurosci; 1996; 18(5-6):535-41. PubMed ID: 8940629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study.
    Bittl JA; Ingwall JS
    J Biol Chem; 1985 Mar; 260(6):3512-7. PubMed ID: 3972835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation.
    McAuliffe JJ; Perry SB; Brooks EE; Ingwall JS
    Biochemistry; 1991 Mar; 30(10):2585-93. PubMed ID: 2001348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 31P NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart.
    Van Dorsten FA; Nederhoff MG; Nicolay K; Van Echteld CJ
    Am J Physiol; 1998 Oct; 275(4):H1191-9. PubMed ID: 9746466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brain high-energy phosphates and creatine kinase synthesis rate under graded isoflurane anesthesia: An in vivo (31) P magnetization transfer study at 11.7 tesla.
    Bresnen A; Duong TQ
    Magn Reson Med; 2015 Feb; 73(2):726-30. PubMed ID: 24523049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.