BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36575257)

  • 1. Improvement of sediment yield index model through incorporating rainfall erosivity.
    Xu D; He Y; Tan Q
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38141-38156. PubMed ID: 36575257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of soil erosion risk in the Mustafakemalpasa River Basin, Turkey, using the revised universal soil loss equation, geographic information system, and remote sensing.
    Ozsoy G; Aksoy E; Dirim MS; Tumsavas Z
    Environ Manage; 2012 Oct; 50(4):679-94. PubMed ID: 22810626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.
    Ouyang W; Hao F; Skidmore AK; Toxopeus AG
    Sci Total Environ; 2010 Dec; 409(2):396-403. PubMed ID: 21071065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spatial and temporal distributions of rainfall erosivity in the Yanhe River Basin].
    Liu CL; Yang QK; Xie HX
    Huan Jing Ke Xue; 2010 Apr; 31(4):850-7. PubMed ID: 20527161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal Variation of Sediment Export from Multiple Taiwan Watersheds.
    Chiang LC; Wang YC; Liao CJ
    Int J Environ Res Public Health; 2019 May; 16(9):. PubMed ID: 31071953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of sub-watershed landscape patterns at the upper reaches of Minjiang River on soil erosion].
    Yang M; Li XZ; Yang ZP; Hu YM; Wen QC
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2512-9. PubMed ID: 18260457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.
    Schönbrodt-Stitt S; Bosch A; Behrens T; Hartmann H; Shi X; Scholten T
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6917-33. PubMed ID: 23340898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Annual sediment yield in sub-watersheds at upper reaches of Minjiang River: a simulation with SEDD model].
    Yang M; Li XZ; Hu YM; He XY
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1758-64. PubMed ID: 17974241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and statistical trend characteristics of rainfall erosivity (R) in upper catchment of Baram River, Borneo.
    Vijith H; Dodge-Wan D
    Environ Monit Assess; 2019 Jul; 191(8):494. PubMed ID: 31302794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of sediment delivery and retention in four watersheds in the Godavari River Basin, India, using InVEST model - an aquatic ecosystem services perspective.
    Kantharajan G; Govindakrishnan PM; Singh RK; Natalia EC; Jones SK; Singh A; Mohindra V; Kumar NKRK; Rana JC; Jena JK; Lal KK
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30371-30384. PubMed ID: 36434447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of two satellite-based precipitation products for assessing rainfall erosivity in China.
    Chen Y; Xu M; Wang Z; Gao P; Lai C
    Sci Total Environ; 2021 Feb; 757():143975. PubMed ID: 33310582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of soil erosion and sediment yield in an ungauged basin based on land use land cover changes.
    Sampath VK; Radhakrishnan N
    Environ Monit Assess; 2023 Dec; 196(1):56. PubMed ID: 38110592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models.
    Li Y; Zhang J; Zhu H; Zhou Z; Jiang S; He S; Zhang Y; Huang Y; Li M; Xing G; Li G
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of AnnAGNPS model for simulation water and sediment yield in the Lianshui River watershed].
    Li S; Liu L
    Huan Jing Ke Xue; 2010 Jan; 31(1):49-57. PubMed ID: 20329515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental drivers of dynamic soil erosion change in a Mediterranean fluvial landscape.
    Diodato N; Fiorillo F; Rinaldi M; Bellocchi G
    PLoS One; 2022; 17(1):e0262132. PubMed ID: 35061741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012.
    Wang Y; Cheng C; Xie Y; Liu B; Yin S; Liu Y; Hao Y
    Sci Total Environ; 2017 Aug; 592():639-648. PubMed ID: 28341463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of contemporary changes in climate and land use/cover on tendencies in water flow, suspended sediment yield and erosion intensity in the northeastern part of the Don River basin, SW European Russia.
    Gusarov AV
    Environ Res; 2019 Aug; 175():468-488. PubMed ID: 31158565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil erosion risk assessment and treatment priority classification: A case study on guder watersheds, Abay river basin, Oromia, Ethiopia.
    Duguma TA
    Heliyon; 2022 Aug; 8(8):e10183. PubMed ID: 36016518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil.
    Wu L; Peng M; Qiao S; Ma XY
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3480-3487. PubMed ID: 29159433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Historic land use and sedimentation in two urban reservoirs, Occoquan Reservoir and Lake Manassas, Virginia, USA.
    Odhiambo BK; Rihl G; Hood-Recant S
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11481-11492. PubMed ID: 34535864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.